Spaces:
Running
on
Zero
Running
on
Zero
visheratin
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import spaces
|
4 |
+
|
5 |
+
import gradio as gr
|
6 |
+
from threading import Thread
|
7 |
+
from transformers import TextIteratorStreamer
|
8 |
+
import hashlib
|
9 |
+
import os
|
10 |
+
|
11 |
+
from transformers import AutoModel, AutoProcessor
|
12 |
+
import torch
|
13 |
+
|
14 |
+
model = AutoModel.from_pretrained("visheratin/MC-LLaVA-3b", torch_dtype=torch.float16, trust_remote_code=True).to("cuda")
|
15 |
+
|
16 |
+
processor = AutoProcessor.from_pretrained("visheratin/MC-LLaVA-3b", trust_remote_code=True)
|
17 |
+
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
DEVICE = "cuda"
|
20 |
+
DTYPE = torch.float16
|
21 |
+
else:
|
22 |
+
DEVICE = "cpu"
|
23 |
+
DTYPE = torch.float32
|
24 |
+
|
25 |
+
def cached_vision_process(image, max_crops, num_tokens):
|
26 |
+
image_hash = hashlib.sha256(image.tobytes()).hexdigest()
|
27 |
+
cache_path = f"visual_cache/{image_hash}-{max_crops}-{num_tokens}.pt"
|
28 |
+
if os.path.exists(cache_path):
|
29 |
+
return torch.load(cache_path).to(DEVICE, dtype=DTYPE)
|
30 |
+
else:
|
31 |
+
processor_outputs = processor.image_processor([image], max_crops)
|
32 |
+
pixel_values = processor_outputs["pixel_values"]
|
33 |
+
pixel_values = [
|
34 |
+
value.to(model.device).to(model.dtype) for value in pixel_values
|
35 |
+
]
|
36 |
+
coords = processor_outputs["coords"]
|
37 |
+
coords = [value.to(model.device).to(model.dtype) for value in coords]
|
38 |
+
image_outputs = model.vision_model(pixel_values, coords, num_tokens)
|
39 |
+
image_features = model.multi_modal_projector(image_outputs)
|
40 |
+
os.makedirs("visual_cache", exist_ok=True)
|
41 |
+
torch.save(image_features, cache_path)
|
42 |
+
return image_features.to(DEVICE, dtype=DTYPE)
|
43 |
+
|
44 |
+
@spaces.GPU(duration=20)
|
45 |
+
def answer_question(image, question, max_crops, num_tokens):
|
46 |
+
prompt = f"""<|im_start|>user
|
47 |
+
<image>
|
48 |
+
{question}<|im_end|>
|
49 |
+
<|im_start|>assistant
|
50 |
+
"""
|
51 |
+
streamer = TextIteratorStreamer(processor.tokenizer, skip_special_tokens=True)
|
52 |
+
inputs = processor(prompt, [image], model, max_crops=max_crops, num_tokens=num_tokens)
|
53 |
+
generation_kwargs = {
|
54 |
+
"input_ids": inputs["input_ids"],
|
55 |
+
"attention_mask": inputs["attention_mask"],
|
56 |
+
"image_features": cached_vision_process(image, max_crops, num_tokens),
|
57 |
+
"streamer": streamer,
|
58 |
+
"max_length": 1000,
|
59 |
+
"use_cache": True,
|
60 |
+
"eos_token_id": processor.tokenizer.eos_token_id,
|
61 |
+
"pad_token_id": processor.tokenizer.eos_token_id,
|
62 |
+
}
|
63 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
64 |
+
thread.start()
|
65 |
+
|
66 |
+
buffer = ""
|
67 |
+
for new_text in streamer:
|
68 |
+
buffer += new_text
|
69 |
+
if len(buffer) > 1:
|
70 |
+
yield buffer
|
71 |
+
|
72 |
+
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
gr.HTML("<h1 class='gradio-heading'><center>MC-LLaVA 3B</center></h1>")
|
75 |
+
gr.HTML(
|
76 |
+
"<center><p class='gradio-sub-heading'>MC-LLaVA 3B is a model that can answer questions about small details in high-resolution images. Check out the <a href='https://huggingface.co/visheratin/MC-LLaVA-3b'>model card</a> for more details. If you have any questions or ideas hot to make the model better, <a href='https://x.com/visheratin'>let me know</a></p></center>"
|
77 |
+
)
|
78 |
+
with gr.Group():
|
79 |
+
with gr.Row():
|
80 |
+
prompt = gr.Textbox(
|
81 |
+
label="Question", placeholder="e.g. What is this?", scale=4
|
82 |
+
)
|
83 |
+
submit = gr.Button(
|
84 |
+
"Submit",
|
85 |
+
scale=1,
|
86 |
+
)
|
87 |
+
with gr.Row():
|
88 |
+
max_crops = gr.Slider(minimum=0, maximum=200, step=5, value=0, label="Max crops")
|
89 |
+
num_tokens = gr.Slider(minimum=728, maximum=2184, step=10, value=728, label="Number of image tokens")
|
90 |
+
with gr.Row():
|
91 |
+
img = gr.Image(type="pil", label="Upload or Drag an Image")
|
92 |
+
output = gr.TextArea(label="Answer")
|
93 |
+
|
94 |
+
submit.click(answer_question, [img, prompt, max_crops, num_tokens], output)
|
95 |
+
prompt.submit(answer_question, [img, prompt, max_crops, num_tokens], output)
|
96 |
+
|
97 |
+
demo.queue().launch(debug=True)
|