import gradio as gr import numpy as np from PIL import Image from transformers import CLIPProcessor, CLIPModel, YolosImageProcessor, YolosForObjectDetection import torch i1 = gr.Image(type="pil", label="Input image") i2 = gr.Textbox(label="Description for section to extracted") i3 = gr.Number(value=0.96, label="Threshold percentage score") o1 = gr.Image(type="pil", label="Extracted Crop part") o2 = gr.Textbox(label="Similarity score") feature_extractor = YolosImageProcessor.from_pretrained("hustvl/yolos-tiny") dmodel = YolosForObjectDetection.from_pretrained('hustvl/yolos-tiny') model = CLIPModel.from_pretrained("openai/clip-vit-base-patch16") processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch16") def extract_image(image, text, prob, num=1): inputs = feature_extractor(images=image, return_tensors="pt") outputs = dmodel(**inputs) # model predicts bounding boxes and corresponding COCO classes logits = outputs.logits bboxes = outputs.pred_boxes probas = outputs.logits.softmax(-1)[0, :, :-1] #removing no class as detr maps keep = probas.max(-1).values > prob outs = feature_extractor.post_process(outputs, torch.tensor(image.size[::-1]).unsqueeze(0)) bboxes_scaled = outs[0]['boxes'][keep].detach().numpy() labels = outs[0]['labels'][keep].detach().numpy() scores = outs[0]['scores'][keep].detach().numpy() images_list = [] for i,j in enumerate(bboxes_scaled): xmin = int(j[0]) ymin = int(j[1]) xmax = int(j[2]) ymax = int(j[3]) im_arr = np.array(image) roi = im_arr[ymin:ymax, xmin:xmax] roi_im = Image.fromarray(roi) images_list.append(roi_im) inpu = processor(text = [text], images=images_list , return_tensors="pt", padding=True) output = model(**inpu) logits_per_image = output.logits_per_text probs = logits_per_image.softmax(-1) l_idx = np.argsort(probs[-1].detach().numpy())[::-1][0:num] final_ims = [] for i,j in enumerate(images_list): json_dict = {} if i in l_idx: json_dict['image'] = images_list[i] json_dict['score'] = probs[-1].detach().numpy()[i] final_ims.append(json_dict) fi = sorted(final_ims, key=lambda item: item.get("score"), reverse=True) return fi[0]['image'], fi[0]['score'] title = "ClipnCrop" description = "

Extract sections of images from your image by using OpenAI's CLIP and Facebooks Detr implemented on HuggingFace Transformers, if the similarity score is not so much, then please consider the prediction to be void.

" examples=[['ex3.jpg', 'black bag', 0.96],['ex2.jpg', 'man in red dress', 0.85]] article = "

clipcrop

" gr_app = gr.Interface(fn=extract_image, inputs=[i1, i2, i3], outputs=[o1, o2], title=title, description=description, article=article, examples=examples) gr_app.launch()