vishnun's picture
Update app.py
403d5d1
raw
history blame
1.22 kB
import streamlit as st
from transformers import T5ForConditionalGeneration, AutoTokenizer
st.title("SimpleGrammarlyT5")
st.markdown('SimpleGrammarlyT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by imputing random noises/errors and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.')
ttokenizer = AutoTokenizer.from_pretrained("./")
tmodel = T5ForConditionalGeneration.from_pretrained('./')
form = st.form("T5-form")
input_text = form.text_input(label='Enter a random sentence')
submit = form.form_submit_button("Submit")
if submit:
input_ids = ttokenizer.encode('seq: '+ input_text, return_tensors='pt')
# generate text until the output length (which includes the context length) reaches 50
outputs = tmodel.generate(
input_ids,
do_sample=True,
max_length=50,
top_p=0.98,
num_return_sequences=3
)
st.subheader("Suggested sentences: ")
i = 0
for x in outputs:
out_text = ttokenizer.decode(x, skip_special_tokens=True)
i = i + 1
st.success(str(i) + '. ' + out_text)