vishnun commited on
Commit
41faa11
1 Parent(s): 96d8424

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -10
app.py CHANGED
@@ -1,16 +1,14 @@
1
  import streamlit as st
2
- from transformers import T5ForConditionalGeneration, AutoTokenizer
3
 
4
  st.title("SpellCorrectorT5")
5
  st.markdown('SpellCorrectorT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by [imputing random noises/errors](./random_noiser.py) and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.')
6
- ttokenizer = AutoTokenizer.from_pretrained("./")
7
- tmodel = T5ForConditionalGeneration.from_pretrained('./')
8
-
9
  form = st.form("T5-form")
10
 
11
  examples = ["I will return it to yu once it is donr",
12
- "Iu is going to rain",
13
- "Feel free to raach out to me",
14
  "Wheir do you live?",
15
  "It wis great mieting with you all"]
16
 
@@ -21,16 +19,16 @@ input_text = form.text_input(label='Enter your own sentence', value=input_text)
21
  submit = form.form_submit_button("Submit")
22
 
23
  if submit:
24
- input_ids = ttokenizer.encode('seq: '+ input_text, return_tensors='pt')
25
 
26
  # generate text until the output length (which includes the context length) reaches 50
27
  outputs = tmodel.generate(
28
  input_ids,
29
  do_sample=True,
30
  max_length=50,
31
- top_p=0.99,
32
- top_k=50,
33
- num_return_sequences=3
34
  )
35
 
36
  st.subheader("Most probable: ")
 
1
  import streamlit as st
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
3
 
4
  st.title("SpellCorrectorT5")
5
  st.markdown('SpellCorrectorT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by [imputing random noises/errors](./random_noiser.py) and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.')
6
+ ttokenizer = AutoTokenizer.from_pretrained("vishnun/tinygram")
7
+ tmodel = AutoModelForSeq2SeqLM.from_pretrained("vishnun/tinygram")
 
8
  form = st.form("T5-form")
9
 
10
  examples = ["I will return it to yu once it is donr",
11
+ "Iu is going to rain",,
 
12
  "Wheir do you live?",
13
  "It wis great mieting with you all"]
14
 
 
19
  submit = form.form_submit_button("Submit")
20
 
21
  if submit:
22
+ input_ids = ttokenizer.encode(input_text, return_tensors='pt')
23
 
24
  # generate text until the output length (which includes the context length) reaches 50
25
  outputs = tmodel.generate(
26
  input_ids,
27
  do_sample=True,
28
  max_length=50,
29
+ top_p=0.999,
30
+ top_k=45,
31
+ num_return_sequences=2
32
  )
33
 
34
  st.subheader("Most probable: ")