Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import T5ForConditionalGeneration, AutoTokenizer
|
3 |
+
|
4 |
+
st.title("NeuralSpellChecker-Lite")
|
5 |
+
st.markdown('NeuralSpellChecker-Lite is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 30000 sentences modified by imputing random noises and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.')
|
6 |
+
ttokenizer = AutoTokenizer.from_pretrained("./")
|
7 |
+
tmodel = T5ForConditionalGeneration.from_pretrained('./')
|
8 |
+
|
9 |
+
form = st.form("NSC form")
|
10 |
+
input_text = form.text_input(label='Enter a random sentence')
|
11 |
+
submit = form.form_submit_button("Submit")
|
12 |
+
|
13 |
+
if submit:
|
14 |
+
input_ids = ttokenizer.encode('seq: '+ input_text, return_tensors='pt')
|
15 |
+
|
16 |
+
# generate text until the output length (which includes the context length) reaches 50
|
17 |
+
outputs = tmodel.generate(
|
18 |
+
input_ids,
|
19 |
+
do_sample=True,
|
20 |
+
max_length=50,
|
21 |
+
top_p=0.98,
|
22 |
+
num_return_sequences=3
|
23 |
+
)
|
24 |
+
|
25 |
+
st.subheader("Suggested sentences: ")
|
26 |
+
|
27 |
+
i = 0
|
28 |
+
for x in outputs:
|
29 |
+
out_text = ttokenizer.decode(x, skip_special_tokens=True)
|
30 |
+
i = i + 1
|
31 |
+
st.success(str(i) + '. ' + out_text)
|