import streamlit as st from transformers import T5ForConditionalGeneration, AutoTokenizer st.title("SimpleGrammarlyT5") st.markdown('SimpleGrammarlyT5 is a fine-tuned version of **pre-trained t5-small model** modelled on randomly selected 50000 sentences modified by imputing random noises/errors and trained using transformers. It not only looks for _spelling errors but also looks for the semantics_ in the sentence and suggest other possible words for the incorrect word.') ttokenizer = AutoTokenizer.from_pretrained("./") tmodel = T5ForConditionalGeneration.from_pretrained('./') form = st.form("T5-form") input_text = form.text_input(label='Enter a random sentence') submit = form.form_submit_button("Submit") if submit: input_ids = ttokenizer.encode('seq: '+ input_text, return_tensors='pt') # generate text until the output length (which includes the context length) reaches 50 outputs = tmodel.generate( input_ids, do_sample=True, max_length=50, top_p=0.98, num_return_sequences=3 ) st.subheader("Suggested sentences: ") i = 0 for x in outputs: out_text = ttokenizer.decode(x, skip_special_tokens=True) i = i + 1 st.success(str(i) + '. ' + out_text)