Comparative-Analysis-of-Speech-Synthesis-Models
/
TensorFlowTTS
/examples
/multiband_melgan
/decode_mb_melgan.py
# -*- coding: utf-8 -*- | |
# Copyright 2020 Minh Nguyen (@dathudeptrai) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Decode trained Mb-Melgan from folder.""" | |
import argparse | |
import logging | |
import os | |
import numpy as np | |
import soundfile as sf | |
import yaml | |
from tqdm import tqdm | |
from tensorflow_tts.configs import MultiBandMelGANGeneratorConfig | |
from tensorflow_tts.datasets import MelDataset | |
from tensorflow_tts.models import TFPQMF, TFMelGANGenerator | |
def main(): | |
"""Run melgan decoding from folder.""" | |
parser = argparse.ArgumentParser( | |
description="Generate Audio from melspectrogram with trained melgan " | |
"(See detail in example/melgan/decode_melgan.py)." | |
) | |
parser.add_argument( | |
"--rootdir", | |
default=None, | |
type=str, | |
required=True, | |
help="directory including ids/durations files.", | |
) | |
parser.add_argument( | |
"--outdir", type=str, required=True, help="directory to save generated speech." | |
) | |
parser.add_argument( | |
"--checkpoint", type=str, required=True, help="checkpoint file to be loaded." | |
) | |
parser.add_argument( | |
"--use-norm", type=int, default=1, help="Use norm or raw melspectrogram." | |
) | |
parser.add_argument("--batch-size", type=int, default=8, help="batch_size.") | |
parser.add_argument( | |
"--config", | |
default=None, | |
type=str, | |
required=True, | |
help="yaml format configuration file. if not explicitly provided, " | |
"it will be searched in the checkpoint directory. (default=None)", | |
) | |
parser.add_argument( | |
"--verbose", | |
type=int, | |
default=1, | |
help="logging level. higher is more logging. (default=1)", | |
) | |
args = parser.parse_args() | |
# set logger | |
if args.verbose > 1: | |
logging.basicConfig( | |
level=logging.DEBUG, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
elif args.verbose > 0: | |
logging.basicConfig( | |
level=logging.INFO, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
else: | |
logging.basicConfig( | |
level=logging.WARN, | |
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s", | |
) | |
logging.warning("Skip DEBUG/INFO messages") | |
# check directory existence | |
if not os.path.exists(args.outdir): | |
os.makedirs(args.outdir) | |
# load config | |
with open(args.config) as f: | |
config = yaml.load(f, Loader=yaml.Loader) | |
config.update(vars(args)) | |
if config["format"] == "npy": | |
mel_query = "*-fs-after-feats.npy" if "fastspeech" in args.rootdir else "*-norm-feats.npy" if args.use_norm == 1 else "*-raw-feats.npy" | |
mel_load_fn = np.load | |
else: | |
raise ValueError("Only npy is supported.") | |
# define data-loader | |
dataset = MelDataset( | |
root_dir=args.rootdir, | |
mel_query=mel_query, | |
mel_load_fn=mel_load_fn, | |
) | |
dataset = dataset.create(batch_size=args.batch_size) | |
# define model and load checkpoint | |
mb_melgan = TFMelGANGenerator( | |
config=MultiBandMelGANGeneratorConfig(**config["multiband_melgan_generator_params"]), | |
name="multiband_melgan_generator", | |
) | |
mb_melgan._build() | |
mb_melgan.load_weights(args.checkpoint) | |
pqmf = TFPQMF( | |
config=MultiBandMelGANGeneratorConfig(**config["multiband_melgan_generator_params"]), name="pqmf" | |
) | |
for data in tqdm(dataset, desc="[Decoding]"): | |
utt_ids, mels, mel_lengths = data["utt_ids"], data["mels"], data["mel_lengths"] | |
# melgan inference. | |
generated_subbands = mb_melgan(mels) | |
generated_audios = pqmf.synthesis(generated_subbands) | |
# convert to numpy. | |
generated_audios = generated_audios.numpy() # [B, T] | |
# save to outdir | |
for i, audio in enumerate(generated_audios): | |
utt_id = utt_ids[i].numpy().decode("utf-8") | |
sf.write( | |
os.path.join(args.outdir, f"{utt_id}.wav"), | |
audio[: mel_lengths[i].numpy() * config["hop_size"]], | |
config["sampling_rate"], | |
"PCM_16", | |
) | |
if __name__ == "__main__": | |
main() | |