Spaces:
Sleeping
Sleeping
File size: 8,839 Bytes
3d2a173 e5af41f 3d2a173 e5af41f 3d2a173 e5af41f 3d2a173 e5af41f 3d2a173 e5af41f 3d2a173 79e74a8 3d2a173 0dbfe10 3d2a173 d7e8845 a939c89 d7e8845 3d2a173 79e74a8 d7e8845 3d2a173 0dbfe10 3d2a173 0dbfe10 3d2a173 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
import gradio as gr
import whisper
import os
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
from docx import Document # For Word output
from fpdf import FPDF # For PDF output
from pptx import Presentation # For PowerPoint output
import subprocess # To use ffmpeg for embedding subtitles
import shlex # For better command-line argument handling
from docx.oxml.ns import qn
from docx.oxml import OxmlElement
# Load the Whisper model
model = whisper.load_model("tiny") # Smaller model for faster transcription
# Load M2M100 translation model for different languages
def load_translation_model(target_language):
lang_codes = {
"fa": "fa", # Persian (Farsi)
"es": "es", # Spanish
"fr": "fr", # French
}
target_lang_code = lang_codes.get(target_language)
if not target_lang_code:
raise ValueError(f"Translation model for {target_language} not supported")
# Load M2M100 model and tokenizer
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
tokenizer.src_lang = "en"
tokenizer.tgt_lang = target_lang_code
return tokenizer, translation_model
def translate_text(text, tokenizer, model):
try:
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
translated = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id(tokenizer.tgt_lang))
return tokenizer.decode(translated[0], skip_special_tokens=True)
except Exception as e:
raise RuntimeError(f"Error during translation: {e}")
# Helper function to format timestamps in SRT format (hh:mm:ss,ms)
def format_timestamp(seconds):
milliseconds = int((seconds % 1) * 1000)
seconds = int(seconds)
hours = seconds // 3600
minutes = (seconds % 3600) // 60
seconds = seconds % 60
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
# Corrected write_srt function
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
with open(output_file, "w") as f:
for i, segment in enumerate(transcription['segments']):
start = segment['start']
end = segment['end']
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
start_time = format_timestamp(start)
end_time = format_timestamp(end)
f.write(f"{i + 1}\n")
f.write(f"{start_time} --> {end_time}\n")
f.write(f"{text.strip()}\n\n")
def embed_hardsub_in_video(video_file, srt_file, output_video):
"""Uses ffmpeg to burn subtitles into the video (hardsub)."""
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
try:
print(f"Running command: {command}") # Debug statement
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
print(f"ffmpeg output: {process.stdout}") # Debug statement
if process.returncode != 0:
raise RuntimeError(f"ffmpeg error: {process.stderr}") # Print the error
except subprocess.TimeoutExpired:
raise RuntimeError("ffmpeg process timed out.")
except Exception as e:
raise RuntimeError(f"Error running ffmpeg: {e}")
from docx.oxml.ns import qn
from docx.oxml import OxmlElement
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
"""Creates a Word document from the transcription with support for RTL when translating to Persian."""
doc = Document()
# Check if the target language is Persian for RTL text direction
rtl = target_language == "fa"
for i, segment in enumerate(transcription['segments']):
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
# Add a paragraph with the text
para = doc.add_paragraph(f"{i + 1}. {text.strip()}")
# If RTL is required, modify the paragraph's properties
if rtl:
# Set the paragraph direction to RTL
para_format = para.paragraph_format
para_format.right_to_left = True
# Set RTL for the text itself
run = para.runs[0]
run._element.rPr.append(OxmlElement('w:bidi'))
doc.save(output_file)
def reverse_text_for_rtl(text):
# Reverse each word in the text to display it correctly in RTL
return ' '.join([word[::-1] for word in text.split()])
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
"""Creates a PDF document from the transcription without timestamps."""
pdf = FPDF()
pdf.add_page()
# Set up the font for Farsi (Unicode-compliant)
font_path = "/home/user/app/B-NAZANIN.TTF" # Ensure the correct path to the font file
pdf.add_font('B-NAZANIN', '', font_path, uni=True)
pdf.set_font('B-NAZANIN', size=12)
for i, segment in enumerate(transcription['segments']):
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
# Reverse the text for proper RTL display
reversed_text = reverse_text_for_rtl(text)
# Add the reversed text to the PDF, right-aligned for Farsi
pdf.multi_cell(0, 10, f"{i + 1}. {reversed_text.strip()}", align='R')
pdf.output(output_file)
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
"""Creates a PowerPoint presentation from the transcription without timestamps."""
ppt = Presentation()
for i, segment in enumerate(transcription['segments']):
text = segment['text']
if translation_model:
text = translate_text(text, tokenizer, translation_model)
slide = ppt.slides.add_slide(ppt.slide_layouts[5]) # Blank slide
title = slide.shapes.title
title.text = f"{i + 1}. {text.strip()}" # No timestamps
ppt.save(output_file)
def transcribe_video(video_file, language, target_language, output_format):
# Transcribe the video with Whisper
result = model.transcribe(video_file.name, language=language)
video_name = os.path.splitext(video_file.name)[0]
# Load the translation model for the selected subtitle language
if target_language != "en":
try:
tokenizer, translation_model = load_translation_model(target_language)
except Exception as e:
raise RuntimeError(f"Error loading translation model: {e}")
else:
tokenizer, translation_model = None, None
# Save the SRT file
srt_file = f"{video_name}.srt"
write_srt(result, srt_file, tokenizer, translation_model)
# Output based on user's selection
if output_format == "SRT":
return srt_file
elif output_format == "Video with Hardsub":
output_video = f"{video_name}_with_subtitles.mp4"
try:
embed_hardsub_in_video(video_file.name, srt_file, output_video)
return output_video
except Exception as e:
raise RuntimeError(f"Error embedding subtitles in video: {e}")
elif output_format == "Word":
word_file = f"{video_name}.docx"
write_word(result, word_file, tokenizer, translation_model)
return word_file
elif output_format == "PDF":
pdf_file = f"{video_name}.pdf"
write_pdf(result, pdf_file, tokenizer, translation_model)
return pdf_file
elif output_format == "PowerPoint":
ppt_file = f"{video_name}.pptx"
write_ppt(result, ppt_file, tokenizer, translation_model)
return ppt_file
# Gradio interface
iface = gr.Interface(
fn=transcribe_video,
inputs=[
gr.File(label="Upload Video"),
gr.Dropdown(label="Select Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
gr.Dropdown(label="Select Subtitle Language", choices=["en", "fa", "es", "fr"], value="fa"),
gr.Radio(label="Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub")
],
outputs=gr.File(label="Download Subtitles, Video, or Document"),
title="Video Subtitle Generator with Hardsub and Document Formats",
description="Upload a video file to generate subtitles in SRT format, download the video with hardsubbed subtitles, or generate Word, PDF, or PowerPoint documents using Whisper and M2M100 for translation."
)
if __name__ == "__main__":
iface.launch()
|