Spaces:
Running
Running
younes21000
commited on
Commit
•
fe11376
1
Parent(s):
7e7b0c1
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import whisper
|
3 |
+
import os
|
4 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
5 |
+
from docx import Document
|
6 |
+
from reportlab.pdfgen import canvas
|
7 |
+
from reportlab.pdfbase.ttfonts import TTFont
|
8 |
+
from reportlab.pdfbase import pdfmetrics
|
9 |
+
from reportlab.lib.pagesizes import A4
|
10 |
+
import arabic_reshaper
|
11 |
+
from bidi.algorithm import get_display
|
12 |
+
from pptx import Presentation
|
13 |
+
import subprocess
|
14 |
+
import shlex
|
15 |
+
import yt_dlp
|
16 |
+
|
17 |
+
# Load the Whisper model (smaller model for faster transcription)
|
18 |
+
model = whisper.load_model("tiny")
|
19 |
+
|
20 |
+
# Load M2M100 translation model for different languages
|
21 |
+
def load_translation_model(target_language):
|
22 |
+
lang_codes = {
|
23 |
+
"fa": "fa", # Persian (Farsi)
|
24 |
+
"es": "es", # Spanish
|
25 |
+
"fr": "fr", # French
|
26 |
+
"de": "de", # German
|
27 |
+
"it": "it", # Italian
|
28 |
+
"pt": "pt", # Portuguese
|
29 |
+
"ar": "ar", # Arabic
|
30 |
+
"zh": "zh", # Chinese
|
31 |
+
"hi": "hi", # Hindi
|
32 |
+
"ja": "ja", # Japanese
|
33 |
+
"ko": "ko", # Korean
|
34 |
+
"ru": "ru", # Russian
|
35 |
+
}
|
36 |
+
target_lang_code = lang_codes.get(target_language)
|
37 |
+
if not target_lang_code:
|
38 |
+
raise ValueError(f"Translation model for {target_language} not supported")
|
39 |
+
|
40 |
+
tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
|
41 |
+
translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
|
42 |
+
|
43 |
+
tokenizer.src_lang = "en"
|
44 |
+
tokenizer.tgt_lang = target_lang_code
|
45 |
+
|
46 |
+
return tokenizer, translation_model
|
47 |
+
|
48 |
+
def translate_text(text, tokenizer, model):
|
49 |
+
try:
|
50 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
|
51 |
+
translated = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id(tokenizer.tgt_lang))
|
52 |
+
return tokenizer.decode(translated[0], skip_special_tokens=True)
|
53 |
+
except Exception as e:
|
54 |
+
raise RuntimeError(f"Error during translation: {e}")
|
55 |
+
|
56 |
+
# Helper function to format timestamps in SRT format
|
57 |
+
def format_timestamp(seconds):
|
58 |
+
milliseconds = int((seconds % 1) * 1000)
|
59 |
+
seconds = int(seconds)
|
60 |
+
hours = seconds // 3600
|
61 |
+
minutes = (seconds % 3600) // 60
|
62 |
+
seconds = seconds % 60
|
63 |
+
return f"{hours:02}:{minutes:02}:{seconds:02},{milliseconds:03}"
|
64 |
+
|
65 |
+
# Corrected write_srt function
|
66 |
+
def write_srt(transcription, output_file, tokenizer=None, translation_model=None):
|
67 |
+
with open(output_file, "w") as f:
|
68 |
+
for i, segment in enumerate(transcription['segments']):
|
69 |
+
start = segment['start']
|
70 |
+
end = segment['end']
|
71 |
+
text = segment['text']
|
72 |
+
|
73 |
+
if translation_model:
|
74 |
+
text = translate_text(text, tokenizer, translation_model)
|
75 |
+
|
76 |
+
start_time = format_timestamp(start)
|
77 |
+
end_time = format_timestamp(end)
|
78 |
+
|
79 |
+
f.write(f"{i + 1}\n")
|
80 |
+
f.write(f"{start_time} --> {end_time}\n")
|
81 |
+
f.write(f"{text.strip()}\n\n")
|
82 |
+
|
83 |
+
# Embedding subtitles into video (hardsub)
|
84 |
+
def embed_hardsub_in_video(video_file, srt_file, output_video):
|
85 |
+
command = f'ffmpeg -i "{video_file}" -vf "subtitles=\'{srt_file}\'" -c:v libx264 -crf 23 -preset medium "{output_video}"'
|
86 |
+
try:
|
87 |
+
process = subprocess.run(shlex.split(command), capture_output=True, text=True, timeout=300)
|
88 |
+
if process.returncode != 0:
|
89 |
+
raise RuntimeError(f"ffmpeg error: {process.stderr}")
|
90 |
+
except subprocess.TimeoutExpired:
|
91 |
+
raise RuntimeError("ffmpeg process timed out.")
|
92 |
+
except Exception as e:
|
93 |
+
raise RuntimeError(f"Error running ffmpeg: {e}")
|
94 |
+
|
95 |
+
# Helper function to write Word documents
|
96 |
+
def write_word(transcription, output_file, tokenizer=None, translation_model=None, target_language=None):
|
97 |
+
doc = Document()
|
98 |
+
rtl = target_language == "fa"
|
99 |
+
for i, segment in enumerate(transcription['segments']):
|
100 |
+
text = segment['text']
|
101 |
+
if translation_model:
|
102 |
+
text = translate_text(text, tokenizer, translation_model)
|
103 |
+
para = doc.add_paragraph(f"{i + 1}. {text.strip()}")
|
104 |
+
if rtl:
|
105 |
+
para.paragraph_format.right_to_left = True
|
106 |
+
doc.save(output_file)
|
107 |
+
|
108 |
+
# Helper function to reverse text for RTL
|
109 |
+
def reverse_text_for_rtl(text):
|
110 |
+
return ' '.join([word[::-1] for word in text.split()])
|
111 |
+
|
112 |
+
# Helper function to write PDF documents
|
113 |
+
def write_pdf(transcription, output_file, tokenizer=None, translation_model=None):
|
114 |
+
# Create PDF with A4 page size
|
115 |
+
c = canvas.Canvas(output_file, pagesize=A4)
|
116 |
+
# Get the directory where app.py is located
|
117 |
+
app_dir = os.path.dirname(os.path.abspath(__file__))
|
118 |
+
|
119 |
+
# Construct the full path to the font files
|
120 |
+
nazanin_font_path = os.path.join(app_dir, 'B-NAZANIN.TTF')
|
121 |
+
arial_font_path = os.path.join(app_dir, 'Arial.ttf')
|
122 |
+
|
123 |
+
# Register B-Nazanin font
|
124 |
+
if os.path.exists(nazanin_font_path):
|
125 |
+
try:
|
126 |
+
pdfmetrics.registerFont(TTFont('B-Nazanin', nazanin_font_path))
|
127 |
+
except Exception as e:
|
128 |
+
raise RuntimeError(f"Error registering B-Nazanin font: {e}.")
|
129 |
+
else:
|
130 |
+
raise FileNotFoundError(f"B-Nazanin font file not found at {nazanin_font_path}. Please ensure it is available.")
|
131 |
+
|
132 |
+
# Register Arial font
|
133 |
+
if os.path.exists(arial_font_path):
|
134 |
+
try:
|
135 |
+
pdfmetrics.registerFont(TTFont('Arial', arial_font_path))
|
136 |
+
except Exception as e:
|
137 |
+
raise RuntimeError(f"Error registering Arial font: {e}.")
|
138 |
+
else:
|
139 |
+
raise FileNotFoundError(f"Arial font file not found at {arial_font_path}. Please ensure it is available.")
|
140 |
+
|
141 |
+
# Initialize y position from top of page
|
142 |
+
y_position = A4[1] - 50 # Start 50 points from top
|
143 |
+
line_height = 20
|
144 |
+
|
145 |
+
# Process each segment
|
146 |
+
for i, segment in enumerate(transcription['segments']):
|
147 |
+
text = segment['text']
|
148 |
+
|
149 |
+
# Translate if translation model is provided
|
150 |
+
if translation_model:
|
151 |
+
text = translate_text(text, tokenizer, translation_model)
|
152 |
+
|
153 |
+
# Format the line with segment number
|
154 |
+
line = f"{i + 1}. {text.strip()}"
|
155 |
+
|
156 |
+
# Determine target language for font and text direction
|
157 |
+
target_language = None
|
158 |
+
if translation_model:
|
159 |
+
# Assuming target language can be inferred from the tokenizer
|
160 |
+
target_language = tokenizer.tgt_lang
|
161 |
+
|
162 |
+
# Reshape and reorder the text for correct RTL display if necessary
|
163 |
+
if target_language in ['fa', 'ar']:
|
164 |
+
reshaped_text = arabic_reshaper.reshape(line)
|
165 |
+
bidi_text = get_display(reshaped_text)
|
166 |
+
# Set font for RTL languages
|
167 |
+
c.setFont('B-Nazanin', 12)
|
168 |
+
# Draw the text right-aligned
|
169 |
+
c.drawRightString(A4[0] - 50, y_position, bidi_text) # 50 points margin from right
|
170 |
+
else:
|
171 |
+
c.setFont('Arial', 12) # Use Arial for other languages
|
172 |
+
c.drawString(50, y_position, line) # Left aligned
|
173 |
+
|
174 |
+
# Add new page if needed
|
175 |
+
if y_position < 50: # Leave 50 points margin at bottom
|
176 |
+
c.showPage()
|
177 |
+
y_position = A4[1] - 50 # Reset y position for new page
|
178 |
+
|
179 |
+
# Update y position for next line
|
180 |
+
y_position -= line_height
|
181 |
+
|
182 |
+
# Save the PDF
|
183 |
+
c.save()
|
184 |
+
return output_file
|
185 |
+
|
186 |
+
|
187 |
+
|
188 |
+
|
189 |
+
# Helper function to write PowerPoint slides
|
190 |
+
def write_ppt(transcription, output_file, tokenizer=None, translation_model=None):
|
191 |
+
ppt = Presentation()
|
192 |
+
slide = ppt.slides.add_slide(ppt.slide_layouts[5]) # Create the first slide
|
193 |
+
text_buffer = "" # Initialize an empty buffer to accumulate text
|
194 |
+
max_chars_per_slide = 400 # Set a character limit for each slide
|
195 |
+
|
196 |
+
for i, segment in enumerate(transcription['segments']):
|
197 |
+
text = segment['text']
|
198 |
+
|
199 |
+
# Translate if translation model is provided
|
200 |
+
if translation_model:
|
201 |
+
text = translate_text(text, tokenizer, translation_model)
|
202 |
+
|
203 |
+
# Format the line with segment number
|
204 |
+
line = f"{i + 1}. {text.strip()}\n"
|
205 |
+
|
206 |
+
# Check if adding this line exceeds the character limit
|
207 |
+
if len(text_buffer) + len(line) > max_chars_per_slide:
|
208 |
+
# If so, add the accumulated text to the current slide
|
209 |
+
slide.shapes.title.text = "Transcription" # Set the title for the slide
|
210 |
+
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
211 |
+
textbox.text = text_buffer.strip()
|
212 |
+
|
213 |
+
# Create a new slide and reset the buffer
|
214 |
+
slide = ppt.slides.add_slide(ppt.slide_layouts[5])
|
215 |
+
text_buffer = line # Start the new slide with the current line
|
216 |
+
else:
|
217 |
+
# Otherwise, keep accumulating text
|
218 |
+
text_buffer += line
|
219 |
+
|
220 |
+
# Add any remaining text in the buffer to the last slide
|
221 |
+
if text_buffer:
|
222 |
+
slide.shapes.title.text = "" # Set the title for the last slide
|
223 |
+
textbox = slide.shapes.add_textbox(left=0, top=0, width=ppt.slide_width, height=ppt.slide_height)
|
224 |
+
textbox.text = text_buffer.strip()
|
225 |
+
|
226 |
+
ppt.save(output_file)
|
227 |
+
|
228 |
+
|
229 |
+
# Function to download YouTube video
|
230 |
+
def download_youtube_video(url):
|
231 |
+
ydl_opts = {
|
232 |
+
'format': 'mp4',
|
233 |
+
'outtmpl': 'downloaded_video.mp4',
|
234 |
+
'nocheckcertificate': True, # Disable certificate check
|
235 |
+
}
|
236 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
237 |
+
ydl.download([url])
|
238 |
+
return 'downloaded_video.mp4'
|
239 |
+
|
240 |
+
|
241 |
+
# Transcribing video and generating output
|
242 |
+
def transcribe_video(video_file, video_url, language, target_language, output_format):
|
243 |
+
if video_url:
|
244 |
+
video_file_path = download_youtube_video(video_url)
|
245 |
+
else:
|
246 |
+
video_file_path = video_file.name
|
247 |
+
|
248 |
+
result = model.transcribe(video_file_path, language=language)
|
249 |
+
video_name = os.path.splitext(video_file_path)[0]
|
250 |
+
if target_language != "en":
|
251 |
+
try:
|
252 |
+
tokenizer, translation_model = load_translation_model(target_language)
|
253 |
+
except Exception as e:
|
254 |
+
raise RuntimeError(f"Error loading translation model: {e}")
|
255 |
+
else:
|
256 |
+
tokenizer, translation_model = None, None
|
257 |
+
|
258 |
+
srt_file = f"{video_name}.srt"
|
259 |
+
write_srt(result, srt_file, tokenizer, translation_model)
|
260 |
+
|
261 |
+
if output_format == "SRT":
|
262 |
+
return srt_file
|
263 |
+
elif output_format == "Video with Hardsub":
|
264 |
+
output_video = f"{video_name}_with_subtitles.mp4"
|
265 |
+
try:
|
266 |
+
embed_hardsub_in_video(video_file_path, srt_file, output_video)
|
267 |
+
return output_video
|
268 |
+
except Exception as e:
|
269 |
+
raise RuntimeError(f"Error embedding subtitles in video: {e}")
|
270 |
+
elif output_format == "Word":
|
271 |
+
word_file = f"{video_name}.docx"
|
272 |
+
write_word(result, word_file, tokenizer, translation_model, target_language)
|
273 |
+
return word_file
|
274 |
+
elif output_format == "PDF":
|
275 |
+
pdf_file = f"{video_name}.pdf"
|
276 |
+
write_pdf(result, pdf_file, tokenizer, translation_model)
|
277 |
+
return pdf_file
|
278 |
+
elif output_format == "PowerPoint":
|
279 |
+
ppt_file = f"{video_name}.pptx"
|
280 |
+
write_ppt(result, ppt_file, tokenizer, translation_model)
|
281 |
+
return ppt_file
|
282 |
+
|
283 |
+
# Gradio interface with YouTube URL
|
284 |
+
iface = gr.Interface(
|
285 |
+
fn=transcribe_video,
|
286 |
+
inputs=[
|
287 |
+
gr.File(label="Upload Video File (or leave empty for YouTube link)"), # Removed 'optional=True'
|
288 |
+
gr.Textbox(label="YouTube Video URL (optional)", placeholder="https://www.youtube.com/watch?v=..."),
|
289 |
+
gr.Dropdown(label="Select Original Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"),
|
290 |
+
gr.Dropdown(label="Select Subtitle Translation Language", choices=["en", "fa", "es", "de", "fr", "it", "pt"], value="fa"),
|
291 |
+
gr.Radio(label="Choose Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub")
|
292 |
+
],
|
293 |
+
outputs=gr.File(label="Download File"),
|
294 |
+
title="Video Subtitle Generator with Translation & Multi-Format Output (Supports YouTube)",
|
295 |
+
description=(
|
296 |
+
"This tool allows you to generate subtitles from a video file or YouTube link using Whisper, "
|
297 |
+
"translate the subtitles into multiple languages using M2M100, and export them "
|
298 |
+
"in various formats including SRT, hardcoded subtitles in video, Word, PDF, or PowerPoint."
|
299 |
+
),
|
300 |
+
theme="compact",
|
301 |
+
live=False
|
302 |
+
)
|
303 |
+
|
304 |
+
if __name__ == "__main__":
|
305 |
+
iface.launch()
|
306 |
+
|
307 |
+
|