import gradio as gr import whisper import os from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer from docx import Document from reportlab.pdfgen import canvas from reportlab.pdfbase.ttfonts import TTFont from reportlab.pdfbase import pdfmetrics from reportlab.lib.pagesizes import A4 import arabic_reshaper from bidi.algorithm import get_display from pptx import Presentation import subprocess import shlex # Define available Whisper models whisper_models = { "Tiny (Fast, Less Accurate)": "tiny", "Base (Medium Speed, Medium Accuracy)": "base", "Small (Good Speed, Good Accuracy)": "small", "Medium (Slow, High Accuracy)": "medium", "Large (Very Slow, Highest Accuracy)": "large" } # Load M2M100 translation model for different languages def load_translation_model(target_language): lang_codes = { "fa": "fa", # Persian (Farsi) "es": "es", # Spanish "fr": "fr", # French "de": "de", # German "it": "it", # Italian "pt": "pt", # Portuguese "ar": "ar", # Arabic "zh": "zh", # Chinese "hi": "hi", # Hindi "ja": "ja", # Japanese "ko": "ko", # Korean "ru": "ru", # Russian "fi": "fi" # Finnish } target_lang_code = lang_codes.get(target_language) if not target_lang_code: raise ValueError(f"Translation model for {target_language} not supported") tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M") translation_model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M") tokenizer.src_lang = "en" tokenizer.tgt_lang = target_lang_code return tokenizer, translation_model def translate_text(text, tokenizer, model): try: inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) translated = model.generate(**inputs, forced_bos_token_id=tokenizer.get_lang_id(tokenizer.tgt_lang)) return tokenizer.decode(translated[0], skip_special_tokens=True) except Exception as e: raise RuntimeError(f"Error during translation: {e}") # (Other code remains unchanged) # Gradio Interface setup iface = gr.Interface( fn=transcribe_video, inputs=[ gr.File(label="Upload Video File"), gr.Dropdown(label="Select Original Video Language", choices=["en", "es", "fr", "de", "it", "pt"], value="en"), gr.Dropdown(label="Select Subtitle Translation Language", choices=["en", "fa", "es", "de", "fr", "it", "pt", "fi"], value="fa"), gr.Dropdown(label="Select Whisper Model", choices=list(whisper_models.keys()), value="Tiny (Fast, Less Accurate)"), gr.Radio(label="Choose Output Format", choices=["SRT", "Video with Hardsub", "Word", "PDF", "PowerPoint"], value="Video with Hardsub") ], outputs=gr.File(label="Download File"), title="Video Subtitle Generator with Translation & Multi-Format Output", description=( "This tool allows you to generate subtitles from a video file, translate the subtitles into multiple languages using M2M100, " "and export them in various formats including SRT, hardcoded subtitles in video, Word, PDF, or PowerPoint." ), theme="compact", live=False ) # Run the interface iface.launch(share=True)