File size: 9,378 Bytes
8d6cd57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import math
from pathlib import Path

import streamlit as st
import numpy as np

import torch
import torch.nn.functional as F

import src.app.params as params
from src.app.questions import q1, q1_options, q2, q2_options, q3, q3_options, q4, q4_options, q5, q5_options, \
    q6, q6_options, q7, q7_options, q8, q8_options, q9, q9_options, q10, q10_options, q11, q11_options
from src.models import ConditionalDecoder
from src.data import get_labels_train, make_galaxy_labels_hierarchical
from src.utils import download_file, sample_labels


# global parameters
device = params.device
size = params.size
y_size = shape_label = params.shape_label
n_channels = params.n_channels
upsample = params.upsample
dim_z = params.dim_z
bs = 16  # number of samples to generate
n_cols = int(math.sqrt(bs))
model_path = params.path_cvae
drive_id = params.drive_id_cvae
path_labels = params.path_labels

# manual labels
q1_out = [0] * len(q1_options)
q2_out = [0] * len(q2_options)
q3_out = [0] * len(q3_options)
q4_out = [0] * len(q4_options)
q5_out = [0] * len(q5_options)
q6_out = [0] * len(q6_options)
q7_out = [0] * len(q7_options)
q8_out = [0] * len(q8_options)
q9_out = [0] * len(q9_options)
q10_out = [0] * len(q10_options)
q11_out = [0] * len(q11_options)


def clear_out(elems=None):
    global q1_out, q2_out, q3_out, q4_out, q5_out, q6_out, q6_out, q7_out, q8_out, q9_out, q10_out, q11_out

    if elems is None:
        elems = list(range(1, 12))

    if 1 in elems:
        q1_out = [0] * len(q1_options)
    if 2 in elems:
        q2_out = [0] * len(q2_options)
    if 3 in elems:
        q3_out = [0] * len(q3_options)
    if 4 in elems:
        q4_out = [0] * len(q4_options)
    if 5 in elems:
        q5_out = [0] * len(q5_options)
    if 6 in elems:
        q6_out = [0] * len(q6_options)
    if 7 in elems:
        q7_out = [0] * len(q7_options)
    if 8 in elems:
        q8_out = [0] * len(q8_options)
    if 9 in elems:
        q9_out = [0] * len(q9_options)
    if 10 in elems:
        q10_out = [0] * len(q10_options)
    if 11 in elems:
        q11_out = [0] * len(q11_options)


@st.cache(allow_output_mutation=True)
def load_model(model_path: str) -> ConditionalDecoder:

    print(f'Loading model: {model_path}')
    g = ConditionalDecoder()
    ckpt = torch.load(model_path, map_location=torch.device('cpu'))
    g.load_state_dict(ckpt)
    g.eval().to(device)
    return g


def get_eps(n: int) -> torch.Tensor:
    eps = torch.randn((n, dim_z), device=device)
    return eps


@st.cache
def get_labels() -> torch.Tensor:
    if not Path(path_labels).exists():
        download_file(params.drive_id_labels, path_labels)

    labels_train = get_labels_train(path_labels)
    return labels_train


def app():
    global q1_out, q2_out, q3_out, q4_out, q5_out, q6_out, q6_out, q7_out, q8_out, q9_out, q10_out, q11_out

    st.title('Explore cVAE')
    st.markdown('This demo shows cVAE for conditional galaxy generation')

    if not Path(model_path).exists():
        download_file(drive_id, model_path)

    model = load_model(model_path)
    eps = get_eps(bs)
    labels_train = get_labels()

    # ========================== Labels ================================
    st.subheader('Label')
    st.markdown(r'There are two types of selecting labels: __Random__ - sample random samples from the dataset;'
                r' __Manual__ - select labels manually (advanced use). When using __Manual__ all of the images will be'
                r' generated with tha same labels')
    label_type = st.radio('Label type', options=['Random', 'Manual (Advanced)'])
    if label_type == 'Random':
        labels = sample_labels(labels_train, bs).to(device)

        st.markdown(r'Click on __Sample labels__ button to sample random input labels')
        change_label = st.button('Sample label')

        if change_label:
            labels = sample_labels(labels_train, bs).to(device)
    elif label_type == 'Manual (Advanced)':
        st.markdown('Answer the questions below')

        q1_select_box = st.selectbox(q1, options=q1_options)
        clear_out()
        q1_out[q1_options.index(q1_select_box)] = 1
        # 1

        if q1_select_box == 'Smooth':
            q7_select_box = st.selectbox(q7, options=q7_options)
            clear_out([2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
            q7_out[q7_options.index(q7_select_box)] = 1
            # 1 - 7

            q6_select_box = st.selectbox(q6, options=q6_options)
            clear_out([2, 3, 4, 5, 6, 8, 9, 10, 11])
            q6_out[q6_options.index(q6_select_box)] = 1
            # 1 - 7 - 6

            if q6_select_box == 'Yes':
                q8_select_box = st.selectbox(q8, options=q8_options)
                clear_out([2, 3, 4, 5, 8, 9, 10, 11])
                q8_out[q8_options.index(q8_select_box)] = 1
                # 1 - 7 - 6 - 8 - end

        elif q1_select_box == 'Features or disk':
            q2_select_box = st.selectbox(q2, options=q2_options)
            clear_out([2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
            q2_out[q2_options.index(q2_select_box)] = 1
            # 1 - 2

            if q2_select_box == 'Yes':
                q9_select_box = st.selectbox(q9, options=q9_options)
                clear_out([3, 4, 5, 6, 7, 8, 9, 10, 11])
                q9_out[q9_options.index(q9_select_box)] = 1
                # 1 - 2 - 9

                q6_select_box = st.selectbox(q6, options=q6_options)
                clear_out([3, 4, 5, 6, 7, 8, 10, 11])
                q6_out[q6_options.index(q6_select_box)] = 1
                # 1 - 2 - 9 - 6

                if q6_select_box == 'Yes':
                    q8_select_box = st.selectbox(q8, options=q8_options)
                    clear_out([3, 4, 5, 7, 8, 10, 11])
                    q8_out[q8_options.index(q8_select_box)] = 1
                    # 1 - 2 - 9 - 6 - 8
            else:
                q3_select_box = st.selectbox(q3, options=q3_options)
                clear_out([3, 4, 5, 6, 7, 8, 9, 10, 11])
                q3_out[q3_options.index(q3_select_box)] = 1
                # 1 - 2 - 3

                q4_select_box = st.selectbox(q4, options=q4_options)
                clear_out([4, 5, 6, 7, 8, 9, 10, 11])
                q4_out[q4_options.index(q4_select_box)] = 1
                # 1 - 2 - 3 - 4

                if q4_select_box == 'Yes':
                    q10_select_box = st.selectbox(q10, options=q10_options)
                    clear_out([5, 6, 7, 8, 9, 10, 11])
                    q10_out[q10_options.index(q10_select_box)] = 1
                    # 1 - 2 - 3 - 4 - 10

                    q11_select_box = st.selectbox(q11, options=q11_options)
                    clear_out([5, 6, 7, 8, 9, 11])
                    q11_out[q11_options.index(q11_select_box)] = 1
                    # 1 - 2 - 3 - 4 - 10 - 11

                    q5_select_box = st.selectbox(q5, options=q5_options)
                    clear_out([5, 6, 7, 8, 9])
                    q5_out[q5_options.index(q5_select_box)] = 1
                    # 1 - 2 - 3 - 4 - 10 - 11 - 5

                    q6_select_box = st.selectbox(q6, options=q6_options)
                    clear_out([6, 7, 8, 9])
                    q6_out[q6_options.index(q6_select_box)] = 1
                    # 1 - 2 - 3 - 4 - 10 - 11 - 5 - 6

                    if q6_select_box == 'Yes':
                        q8_select_box = st.selectbox(q8, options=q8_options)
                        clear_out([7, 8, 9])
                        q8_out[q8_options.index(q8_select_box)] = 1
                        # 1 - 2 - 3 - 4 - 10 - 11 - 5 - 6 - 8 - End
                else:
                    q5_select_box = st.selectbox(q5, options=q5_options)
                    clear_out([5, 6, 7, 8, 9, 10, 11])
                    q5_out[q5_options.index(q5_select_box)] = 1
                    # 1 - 2 - 3 - 4 - 5

                    q6_select_box = st.selectbox(q6, options=q6_options)
                    clear_out([6, 7, 8, 9, 10, 11])
                    q6_out[q6_options.index(q6_select_box)] = 1
                    # 1 - 2 - 3 - 4 - 5 - 6

                    if q6_select_box == 'Yes':
                        q8_select_box = st.selectbox(q8, options=q8_options)
                        clear_out([7, 8, 9, 10, 11])
                        q8_out[q8_options.index(q8_select_box)] = 1
                        # 1 - 2 - 3 - 4 - 5 - 6 - 8 - End

        labels = [*q1_out, *q2_out, *q3_out, *q4_out, *q5_out, *q6_out, *q7_out, *q8_out, *q9_out, *q10_out, *q11_out]
        labels = torch.Tensor(labels).to(device)
        labels = labels.unsqueeze(0).repeat(bs, 1)
        labels = make_galaxy_labels_hierarchical(labels)
        clear_out()
    # ========================== Labels ================================

    st.subheader('Noise')
    st.markdown(r'Click on __Change eps__ button to change input $\varepsilon$ latent space')
    change_eps = st.button('Change eps')
    if change_eps:
        eps = get_eps(bs)

    with torch.no_grad():
        imgs = model(eps, labels)

    if upsample:
        imgs = F.interpolate(imgs, (size * 4, size * 4), mode='bicubic')

    imgs = [(imgs[i].permute(1, 2, 0).numpy() * 127.5 + 127.5).astype(np.uint8) for i in range(bs)]

    counter = 0
    for r in range(bs // n_cols):
        cols = st.columns(n_cols)

        for c in range(n_cols):
            cols[c].image(imgs[counter])
            counter += 1