Spaces:
Runtime error
Runtime error
import math | |
import numpy as np | |
import streamlit as st | |
import torch | |
import torch.nn.functional as F | |
import src.app.params as params | |
from src.models import ConditionalGenerator as InfoSCC_GAN | |
from src.models.big.BigGAN2 import Generator as BigGAN2Generator | |
from src.models import ConditionalDecoder as cVAE | |
from src.data import get_labels_train | |
from src.utils import sample_labels | |
device = params.device | |
size = params.size | |
n_layers = int(math.log2(size) - 2) | |
bs = 12 | |
lin_space = torch.linspace(0, 1, bs).unsqueeze(1) | |
captions = [f'label_a * {(1 - x):.02f} + label_b * {x:.02f}' for x in lin_space.squeeze().numpy()] | |
def load_model(model_type: str): | |
print(f'Loading model: {model_type}') | |
if model_type == 'InfoSCC-GAN': | |
g = InfoSCC_GAN(size=params.size, | |
y_size=params.shape_label, | |
z_size=params.noise_dim) | |
ckpt = torch.load(params.path_infoscc_gan, map_location=torch.device('cpu')) | |
g.load_state_dict(ckpt['g_ema']) | |
elif model_type == 'BigGAN': | |
g = BigGAN2Generator() | |
ckpt = torch.load(params.path_biggan, map_location=torch.device('cpu')) | |
g.load_state_dict(ckpt) | |
elif model_type == 'cVAE': | |
g = cVAE() | |
ckpt = torch.load(params.path_cvae, map_location=torch.device('cpu')) | |
g.load_state_dict(ckpt) | |
else: | |
raise ValueError('Unsupported model') | |
g = g.eval().to(device=params.device) | |
return g | |
def get_labels() -> torch.Tensor: | |
path_labels = params.path_labels | |
labels_train = get_labels_train(path_labels) | |
return labels_train | |
def get_eps(n: int) -> torch.Tensor: | |
eps = torch.randn((n, params.dim_z), device=device) | |
return eps | |
def app(): | |
global lin_space, captions | |
st.title('Interpolate Labels') | |
st.markdown('This app allows the generation of the images with the labels that are interpolated between two labels.') | |
st.markdown('In each row there are images generated with the same interpolated label by one of the models') | |
biggan = load_model('BigGAN') | |
infoscc_gan = load_model('InfoSCC-GAN') | |
cvae = load_model('cVAE') | |
labels_train = get_labels() | |
# ==================== Labels ============================================== | |
label_a = sample_labels(labels_train, n=1).repeat(bs, 1) | |
label_b = sample_labels(labels_train, n=1).repeat(bs, 1) | |
label_interpolated = (1 - lin_space) * label_a + lin_space * label_b | |
sample_label = st.button('Sample label') | |
if sample_label: | |
label_a = sample_labels(labels_train, n=1).repeat(bs, 1) | |
label_b = sample_labels(labels_train, n=1).repeat(bs, 1) | |
label_interpolated = (1 - lin_space) * label_a + lin_space * label_b | |
# ==================== Labels ============================================== | |
# ==================== Noise ============================================== | |
eps = get_eps(1).repeat(bs, 1) | |
eps_infoscc = infoscc_gan.sample_eps(1).repeat(bs, 1) | |
zs = np.array([[0.0] * params.n_basis] * n_layers, dtype=np.float32) | |
zs_torch = torch.from_numpy(zs).unsqueeze(0).repeat(bs, 1, 1).to(device) | |
st.subheader('Noise') | |
st.markdown(r'Click on __Change eps__ button to change input $\varepsilon$ latent space') | |
change_eps = st.button('Change eps') | |
if change_eps: | |
eps = get_eps(1).repeat(bs, 1) | |
eps_infoscc = infoscc_gan.sample_eps(1).repeat(bs, 1) | |
# ==================== Noise ============================================== | |
with torch.no_grad(): | |
imgs_biggan = biggan(eps, label_interpolated).squeeze(0).cpu() | |
imgs_infoscc = infoscc_gan(label_interpolated, eps_infoscc, zs_torch).squeeze(0).cpu() | |
imgs_cvae = cvae(eps, label_interpolated).squeeze(0).cpu() | |
if params.upsample: | |
imgs_biggan = F.interpolate(imgs_biggan, (size * 4, size * 4), mode='bicubic') | |
imgs_infoscc = F.interpolate(imgs_infoscc, (size * 4, size * 4), mode='bicubic') | |
imgs_cvae = F.interpolate(imgs_cvae, (size * 4, size * 4), mode='bicubic') | |
imgs_biggan = torch.clip(imgs_biggan, 0, 1) | |
imgs_biggan = [(imgs_biggan[i].permute(1, 2, 0).numpy() * 255).astype(np.uint8) for i in range(bs)] | |
imgs_infoscc = [(imgs_infoscc[i].permute(1, 2, 0).numpy() * 127.5 + 127.5).astype(np.uint8) for i in range(bs)] | |
imgs_cvae = [(imgs_cvae[i].permute(1, 2, 0).numpy() * 127.5 + 127.5).astype(np.uint8) for i in range(bs)] | |
c1, c2, c3 = st.columns(3) | |
c1.header('BigGAN') | |
c1.image(imgs_biggan, use_column_width=True, caption=captions) | |
c2.header('InfoSCC-GAN') | |
c2.image(imgs_infoscc, use_column_width=True, caption=captions) | |
c3.header('cVAE') | |
c3.image(imgs_cvae, use_column_width=True, caption=captions) | |