Spaces:
Runtime error
Runtime error
""" hardcoded parameter | |
these can be changed in a jupyter notebook during runtime via | |
import parameter | |
parameter.parameter = new_value | |
""" | |
from torch.optim import Adam | |
############### | |
## hardcoded ## | |
############### | |
# Input | |
image_dim = 64 | |
colors_dim = 3 | |
labels_dim = 37 #3 | |
input_size = (colors_dim,image_dim,image_dim) | |
############# | |
## mutable ## | |
############# | |
class Parameter: | |
""" container for hyperparameters""" | |
def __init__(self): | |
# Encoder/Decoder | |
self.latent_dim = 8 | |
self.decoder_dim = self.latent_dim # differs from latent_dim if PCA applied before decoder | |
# General | |
self.learning_rate = 0.0002 | |
self.betas = (0.5,0.999) ## 0.999 is default beta2 in tensorflow | |
self.optimizer = Adam | |
self.negative_slope = 0.2 # for LeakyReLU | |
self.momentum = 0.99 # for BatchNorm | |
# Loss weights | |
self.alpha = 1 # switch VAE (1) / AE (0) | |
self.beta = 1 # weight for KL-loss | |
self.gamma = 1024 # weight for learned-metric-loss (https://arxiv.org/pdf/1512.09300.pdf) | |
self.delta = 1 # weight for class-loss | |
self.zeta = 0.5 # weight for MSE-loss | |
def return_parameter_dict(self): | |
return(self.__dict__) | |
parameter = Parameter() | |