from pathlib import Path import math import streamlit as st import numpy as np import torch import torch.nn.functional as F import src.app.params as params from src.app.questions import q1, q1_options, q2, q2_options, q3, q3_options, q4, q4_options, q5, q5_options, \ q6, q6_options, q7, q7_options, q8, q8_options, q9, q9_options, q10, q10_options, q11, q11_options from src.models import ConditionalGenerator as InfoSCC_GAN from src.models.big.BigGAN2 import Generator as BigGAN2Generator from src.models import ConditionalDecoder as cVAE from src.data import get_labels_train, make_galaxy_labels_hierarchical from src.utils import download_file, sample_labels device = params.device bs = 10 # number of images to generate each model n_cols = int(math.sqrt(bs)) size = params.size n_layers = int(math.log2(size) - 2) # manual labels q1_out = [0] * len(q1_options) q2_out = [0] * len(q2_options) q3_out = [0] * len(q3_options) q4_out = [0] * len(q4_options) q5_out = [0] * len(q5_options) q6_out = [0] * len(q6_options) q7_out = [0] * len(q7_options) q8_out = [0] * len(q8_options) q9_out = [0] * len(q9_options) q10_out = [0] * len(q10_options) q11_out = [0] * len(q11_options) def clear_out(elems=None): global q1_out, q2_out, q3_out, q4_out, q5_out, q6_out, q6_out, q7_out, q8_out, q9_out, q10_out, q11_out if elems is None: elems = list(range(1, 12)) if 1 in elems: q1_out = [0] * len(q1_options) if 2 in elems: q2_out = [0] * len(q2_options) if 3 in elems: q3_out = [0] * len(q3_options) if 4 in elems: q4_out = [0] * len(q4_options) if 5 in elems: q5_out = [0] * len(q5_options) if 6 in elems: q6_out = [0] * len(q6_options) if 7 in elems: q7_out = [0] * len(q7_options) if 8 in elems: q8_out = [0] * len(q8_options) if 9 in elems: q9_out = [0] * len(q9_options) if 10 in elems: q10_out = [0] * len(q10_options) if 11 in elems: q11_out = [0] * len(q11_options) @st.cache(allow_output_mutation=True) def load_model(model_type: str): print(f'Loading model: {model_type}') if model_type == 'InfoSCC-GAN': g = InfoSCC_GAN(size=params.size, y_size=params.shape_label, z_size=params.noise_dim) if not Path(params.path_infoscc_gan).exists(): download_file(params.drive_id_infoscc_gan, params.path_infoscc_gan) ckpt = torch.load(params.path_infoscc_gan, map_location=torch.device('cpu')) g.load_state_dict(ckpt['g_ema']) elif model_type == 'BigGAN': g = BigGAN2Generator() if not Path(params.path_biggan).exists(): download_file(params.drive_id_biggan, params.path_biggan) ckpt = torch.load(params.path_biggan, map_location=torch.device('cpu')) g.load_state_dict(ckpt) elif model_type == 'cVAE': g = cVAE() if not Path(params.path_cvae).exists(): download_file(params.drive_id_cvae, params.path_cvae) ckpt = torch.load(params.path_cvae, map_location=torch.device('cpu')) g.load_state_dict(ckpt) else: raise ValueError('Unsupported model') g = g.eval().to(device=params.device) return g @st.cache def get_labels() -> torch.Tensor: path_labels = params.path_labels if not Path(path_labels).exists(): download_file(params.drive_id_labels, path_labels) labels_train = get_labels_train(path_labels) return labels_train def get_eps(n: int) -> torch.Tensor: eps = torch.randn((n, params.dim_z), device=device) return eps def app(): global q1_out, q2_out, q3_out, q4_out, q5_out, q6_out, q6_out, q7_out, q8_out, q9_out, q10_out, q11_out st.title('Compare models') st.markdown('This demo allows to compare BigGAN, InfoSCC-GAN and cVAE models for conditional galaxy generation.') st.markdown('In each there there are images generated with the same labels by each of the models') biggan = load_model('BigGAN') infoscc_gan = load_model('InfoSCC-GAN') cvae = load_model('cVAE') labels_train = get_labels() eps = get_eps(bs) # for BigGAN and cVAE eps_infoscc = infoscc_gan.sample_eps(bs) zs = np.array([[0.0] * params.n_basis] * n_layers, dtype=np.float32) zs_torch = torch.from_numpy(zs).unsqueeze(0).repeat(bs, 1, 1).to(device) # ========================== Labels ================================ st.subheader('Label') st.markdown(r'There are two types of selecting labels: __Random__ - sample random samples from the dataset;' r' __Manual__ - select labels manually (advanced use). When using __Manual__ all of the images will be' r' generated with tha same labels') label_type = st.radio('Label type', options=['Random', 'Manual (Advanced)']) if label_type == 'Random': labels = sample_labels(labels_train, bs).to(device) st.markdown(r'Click on __Sample labels__ button to sample random input labels') change_label = st.button('Sample label') if change_label: labels = sample_labels(labels_train, bs).to(device) elif label_type == 'Manual (Advanced)': st.markdown('Answer the questions below') q1_select_box = st.selectbox(q1, options=q1_options) clear_out() q1_out[q1_options.index(q1_select_box)] = 1 # 1 if q1_select_box == 'Smooth': q7_select_box = st.selectbox(q7, options=q7_options) clear_out([2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) q7_out[q7_options.index(q7_select_box)] = 1 # 1 - 7 q6_select_box = st.selectbox(q6, options=q6_options) clear_out([2, 3, 4, 5, 6, 8, 9, 10, 11]) q6_out[q6_options.index(q6_select_box)] = 1 # 1 - 7 - 6 if q6_select_box == 'Yes': q8_select_box = st.selectbox(q8, options=q8_options) clear_out([2, 3, 4, 5, 8, 9, 10, 11]) q8_out[q8_options.index(q8_select_box)] = 1 # 1 - 7 - 6 - 8 - end elif q1_select_box == 'Features or disk': q2_select_box = st.selectbox(q2, options=q2_options) clear_out([2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) q2_out[q2_options.index(q2_select_box)] = 1 # 1 - 2 if q2_select_box == 'Yes': q9_select_box = st.selectbox(q9, options=q9_options) clear_out([3, 4, 5, 6, 7, 8, 9, 10, 11]) q9_out[q9_options.index(q9_select_box)] = 1 # 1 - 2 - 9 q6_select_box = st.selectbox(q6, options=q6_options) clear_out([3, 4, 5, 6, 7, 8, 10, 11]) q6_out[q6_options.index(q6_select_box)] = 1 # 1 - 2 - 9 - 6 if q6_select_box == 'Yes': q8_select_box = st.selectbox(q8, options=q8_options) clear_out([3, 4, 5, 7, 8, 10, 11]) q8_out[q8_options.index(q8_select_box)] = 1 # 1 - 2 - 9 - 6 - 8 else: q3_select_box = st.selectbox(q3, options=q3_options) clear_out([3, 4, 5, 6, 7, 8, 9, 10, 11]) q3_out[q3_options.index(q3_select_box)] = 1 # 1 - 2 - 3 q4_select_box = st.selectbox(q4, options=q4_options) clear_out([4, 5, 6, 7, 8, 9, 10, 11]) q4_out[q4_options.index(q4_select_box)] = 1 # 1 - 2 - 3 - 4 if q4_select_box == 'Yes': q10_select_box = st.selectbox(q10, options=q10_options) clear_out([5, 6, 7, 8, 9, 10, 11]) q10_out[q10_options.index(q10_select_box)] = 1 # 1 - 2 - 3 - 4 - 10 q11_select_box = st.selectbox(q11, options=q11_options) clear_out([5, 6, 7, 8, 9, 11]) q11_out[q11_options.index(q11_select_box)] = 1 # 1 - 2 - 3 - 4 - 10 - 11 q5_select_box = st.selectbox(q5, options=q5_options) clear_out([5, 6, 7, 8, 9]) q5_out[q5_options.index(q5_select_box)] = 1 # 1 - 2 - 3 - 4 - 10 - 11 - 5 q6_select_box = st.selectbox(q6, options=q6_options) clear_out([6, 7, 8, 9]) q6_out[q6_options.index(q6_select_box)] = 1 # 1 - 2 - 3 - 4 - 10 - 11 - 5 - 6 if q6_select_box == 'Yes': q8_select_box = st.selectbox(q8, options=q8_options) clear_out([7, 8, 9]) q8_out[q8_options.index(q8_select_box)] = 1 # 1 - 2 - 3 - 4 - 10 - 11 - 5 - 6 - 8 - End else: q5_select_box = st.selectbox(q5, options=q5_options) clear_out([5, 6, 7, 8, 9, 10, 11]) q5_out[q5_options.index(q5_select_box)] = 1 # 1 - 2 - 3 - 4 - 5 q6_select_box = st.selectbox(q6, options=q6_options) clear_out([6, 7, 8, 9, 10, 11]) q6_out[q6_options.index(q6_select_box)] = 1 # 1 - 2 - 3 - 4 - 5 - 6 if q6_select_box == 'Yes': q8_select_box = st.selectbox(q8, options=q8_options) clear_out([7, 8, 9, 10, 11]) q8_out[q8_options.index(q8_select_box)] = 1 # 1 - 2 - 3 - 4 - 5 - 6 - 8 - End labels = [*q1_out, *q2_out, *q3_out, *q4_out, *q5_out, *q6_out, *q7_out, *q8_out, *q9_out, *q10_out, *q11_out] labels = torch.Tensor(labels).to(device) labels = labels.unsqueeze(0).repeat(bs, 1) labels = make_galaxy_labels_hierarchical(labels) clear_out() # ========================== Labels ================================ st.subheader('Noise') st.markdown(r'Click on __Change eps__ button to change input $\varepsilon$ latent space') change_eps = st.button('Change eps') if change_eps: eps = get_eps(bs) # for BigGAN and cVAE eps_infoscc = infoscc_gan.sample_eps(bs) with torch.no_grad(): imgs_biggan = biggan(eps, labels).squeeze(0).cpu() imgs_infoscc = infoscc_gan(labels, eps_infoscc, zs_torch).squeeze(0).cpu() imgs_cvae = cvae(eps, labels).squeeze(0).cpu() if params.upsample: imgs_biggan = F.interpolate(imgs_biggan, (size * 4, size * 4), mode='bicubic') imgs_infoscc = F.interpolate(imgs_infoscc, (size * 4, size * 4), mode='bicubic') imgs_cvae = F.interpolate(imgs_cvae, (size * 4, size * 4), mode='bicubic') imgs_biggan = torch.clip(imgs_biggan, 0, 1) imgs_biggan = [(imgs_biggan[i].permute(1, 2, 0).numpy() * 255).astype(np.uint8) for i in range(bs)] imgs_infoscc = [(imgs_infoscc[i].permute(1, 2, 0).numpy() * 127.5 + 127.5).astype(np.uint8) for i in range(bs)] imgs_cvae = [(imgs_cvae[i].permute(1, 2, 0).numpy() * 127.5 + 127.5).astype(np.uint8) for i in range(bs)] c1, c2, c3 = st.columns(3) c1.header('BigGAN') c1.image(imgs_biggan, use_column_width=True) c2.header('InfoSCC-GAN') c2.image(imgs_infoscc, use_column_width=True) c3.header('cVAE') c3.image(imgs_cvae, use_column_width=True)