import streamlit as st from keras.models import load_model from PIL import Image, ImageOps import numpy as np # Disable scientific notation for clarity np.set_printoptions(suppress=True) # Load the model model = load_model("braintumour_model.h5", compile=False) # Load the labels class_names = open("labels.txt", "r").readlines() # Function to preprocess the image def preprocess_image(image): # resizing the image to be at least 224x224 and then cropping from the center size = (224, 224) image = ImageOps.fit(image, size, Image.Resampling.LANCZOS) # turn the image into a numpy array image_array = np.asarray(image) # Normalize the image normalized_image_array = (image_array.astype(np.float32) / 127.5) - 1 # Return the preprocessed image return normalized_image_array # Function to predict the image class def predict_image_class(image): # Create the array of the right shape to feed into the keras model data = np.ndarray(shape=(1, 224, 224, 3), dtype=np.float32) # Load the image into the array data[0] = image # Predict the model prediction = model.predict(data) index = np.argmax(prediction) class_name = class_names[index] confidence_score = prediction[0][index] return class_name[2:], round(confidence_score, 2)*100 # Streamlit app def main(): # Set page title and icon st.set_page_config(page_title="Brain Tumour Classifier", page_icon="🧠") st.title("Brain Tumour Classifier") # Upload image file uploaded_file = st.file_uploader("Upload the MRI", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file).convert("RGB") st.image(image, caption="Uploaded Image", use_column_width=True) preprocessed_image = preprocess_image(image) # Predict the image class class_name, confidence_score = predict_image_class(preprocessed_image) # Display the prediction st.subheader("RESULT") st.write("Class:", "**" + class_name + "**") st.write("Prediction Probability:", "**" + str(confidence_score) + "%**") # Run the app if __name__ == "__main__": main()