clip / app.py
Vivien
Simplify code
000d238
raw
history blame
3.59 kB
import streamlit as st
import pandas as pd, numpy as np
import os
from transformers import CLIPProcessor, CLIPTextModel, CLIPModel
@st.cache(show_spinner=False,
hash_funcs={CLIPModel: lambda _: None,
CLIPTextModel: lambda _: None,
CLIPProcessor: lambda _: None,
dict: lambda _: None})
def load():
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
df = {0: pd.read_csv('data.csv'), 1: pd.read_csv('data2.csv')}
embeddings = {0: np.load('embeddings.npy'), 1: np.load('embeddings2.npy')}
for k in [0, 1]:
embeddings[k] = np.divide(embeddings[k], np.sqrt(np.sum(embeddings[k]**2, axis=1, keepdims=True)))
return model, processor, df, embeddings
model, processor, df, embeddings = load()
source = {0: '\nSource: Unsplash', 1: '\nSource: The Movie Database (TMDB)'}
def get_html(url_list, height=200):
html = "<div style='margin-top: 20px; max-width: 1200px; display: flex; flex-wrap: wrap; justify-content: space-evenly'>"
for url, title, link in url_list:
html2 = f"<img title='{title}' style='height: {height}px; margin: 5px' src='{url}'>"
if len(link) > 0:
html2 = f"<a href='{link}' target='_blank'>" + html2 + "</a>"
html = html + html2
html += "</div>"
return html
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
return model.get_text_features(**inputs)
st.cache(show_spinner=False)
def image_search(query, corpus, n_results=24):
text_embeddings = compute_text_embeddings([query]).detach().numpy()
k = 0 if corpus == 'Unsplash' else 1
results = np.argsort((embeddings[k]@text_embeddings.T)[:, 0])[-1:-n_results-1:-1]
return [(df[k].iloc[i]['path'],
df[k].iloc[i]['tooltip'] + source[k],
df[k].iloc[i]['link']) for i in results]
description = '''
# Semantic image search
**Enter your query and hit enter**
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, πŸ€— Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
'''
def main():
st.markdown('''
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
section.main>div:first-child {
padding-top: 50px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>''',
unsafe_allow_html=True)
st.sidebar.markdown(description)
_, c, _ = st.beta_columns((1, 3, 1))
query = c.text_input('', value='clouds at sunset')
corpus = st.radio('', ["Unsplash","Movies"])
if len(query) > 0:
results = image_search(query, corpus)
st.markdown(get_html(results), unsafe_allow_html=True)
if __name__ == '__main__':
main()