VIVEK JAYARAM
commited on
Commit
·
3e0a809
1
Parent(s):
d8f7287
Basic working example
Browse files- cdim/diffusion/diffusion_pipeline.py +53 -0
- cdim/diffusion/scheduling_ddim.py +513 -0
- cdim/dps_model/dps_unet.py +1118 -0
- cdim/dps_model/fp16_util.py +234 -0
- cdim/dps_model/nn.py +170 -0
- cdim/image_utils.py +51 -0
- cdim/noise.py +6 -4
- cdim/operators/__init__.py +1 -0
- cdim/operators/random_pixel_masker.py +58 -0
- inference.py +34 -2
- models/ffhq_model_config.yaml +20 -0
- operator_configs/random_inpainting_config.yaml +5 -0
cdim/diffusion/diffusion_pipeline.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from tqdm import tqdm
|
3 |
+
|
4 |
+
from cdim.image_utils import randn_tensor
|
5 |
+
|
6 |
+
|
7 |
+
@torch.no_grad()
|
8 |
+
def run_diffusion(
|
9 |
+
model,
|
10 |
+
scheduler,
|
11 |
+
noisy_observation,
|
12 |
+
operator,
|
13 |
+
noise_function,
|
14 |
+
device,
|
15 |
+
num_inference_steps: int = 1000,
|
16 |
+
K=5,
|
17 |
+
image_dim=256,
|
18 |
+
image_channels=3
|
19 |
+
):
|
20 |
+
batch_size = noisy_observation.shape[0]
|
21 |
+
image_shape = (batch_size, image_channels, image_dim, image_dim)
|
22 |
+
image = randn_tensor(image_shape, device=device)
|
23 |
+
|
24 |
+
scheduler.set_timesteps(num_inference_steps, device=device)
|
25 |
+
t_skip = scheduler.timesteps[0] - scheduler.timesteps[1]
|
26 |
+
|
27 |
+
for i, t in tqdm(enumerate(scheduler.timesteps), total=len(scheduler.timesteps), desc="Processing timesteps"):
|
28 |
+
# 1. predict noise model_output
|
29 |
+
model_output = model(image, t.unsqueeze(0).to(device))[:, :3]
|
30 |
+
|
31 |
+
# 2. compute previous image: x_t -> x_t-1
|
32 |
+
image = scheduler.step(model_output, t, image).prev_sample
|
33 |
+
image.requires_grad_()
|
34 |
+
alpha_prod_t_prev = scheduler.alphas_cumprod[t-t_skip] if t-t_skip >= 0 else 1
|
35 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
36 |
+
for j in range(K):
|
37 |
+
if t <= 0: break
|
38 |
+
|
39 |
+
with torch.enable_grad():
|
40 |
+
# Calculate x^hat_0
|
41 |
+
model_output = model(image, (t - t_skip).unsqueeze(0).to(device))[:, :3]
|
42 |
+
x_0 = (image - beta_prod_t_prev ** (0.5) * model_output) / alpha_prod_t_prev ** (0.5)
|
43 |
+
|
44 |
+
distance = operator(x_0) - noisy_observation
|
45 |
+
if (distance ** 2).mean() < noise_function.sigma ** 2:
|
46 |
+
break
|
47 |
+
loss = ((distance) ** 2).mean()
|
48 |
+
print(loss.mean())
|
49 |
+
loss.mean().backward()
|
50 |
+
|
51 |
+
image -= 10 / torch.linalg.norm(image.grad) * image.grad
|
52 |
+
|
53 |
+
return image
|
cdim/diffusion/scheduling_ddim.py
ADDED
@@ -0,0 +1,513 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 Stanford University Team and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
16 |
+
# and https://github.com/hojonathanho/diffusion
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from collections import OrderedDict
|
21 |
+
from typing import List, Optional, Tuple, Union
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import torch
|
25 |
+
|
26 |
+
from cdim.image_utils import randn_tensor
|
27 |
+
|
28 |
+
|
29 |
+
class FrozenDict(OrderedDict):
|
30 |
+
def __init__(self, *args, **kwargs):
|
31 |
+
super().__init__(*args, **kwargs)
|
32 |
+
|
33 |
+
for key, value in self.items():
|
34 |
+
setattr(self, key, value)
|
35 |
+
|
36 |
+
self.__frozen = True
|
37 |
+
|
38 |
+
def __delitem__(self, *args, **kwargs):
|
39 |
+
raise Exception(f"You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.")
|
40 |
+
|
41 |
+
def setdefault(self, *args, **kwargs):
|
42 |
+
raise Exception(f"You cannot use ``setdefault`` on a {self.__class__.__name__} instance.")
|
43 |
+
|
44 |
+
def pop(self, *args, **kwargs):
|
45 |
+
raise Exception(f"You cannot use ``pop`` on a {self.__class__.__name__} instance.")
|
46 |
+
|
47 |
+
def update(self, *args, **kwargs):
|
48 |
+
raise Exception(f"You cannot use ``update`` on a {self.__class__.__name__} instance.")
|
49 |
+
|
50 |
+
def __setattr__(self, name, value):
|
51 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
52 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
53 |
+
super().__setattr__(name, value)
|
54 |
+
|
55 |
+
def __setitem__(self, name, value):
|
56 |
+
if hasattr(self, "__frozen") and self.__frozen:
|
57 |
+
raise Exception(f"You cannot use ``__setattr__`` on a {self.__class__.__name__} instance.")
|
58 |
+
super().__setitem__(name, value)
|
59 |
+
|
60 |
+
|
61 |
+
@dataclass
|
62 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM
|
63 |
+
class DDIMSchedulerOutput:
|
64 |
+
"""
|
65 |
+
Output class for the scheduler's `step` function output.
|
66 |
+
|
67 |
+
Args:
|
68 |
+
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
69 |
+
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
70 |
+
denoising loop.
|
71 |
+
pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
72 |
+
The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
|
73 |
+
`pred_original_sample` can be used to preview progress or for guidance.
|
74 |
+
"""
|
75 |
+
|
76 |
+
prev_sample: torch.FloatTensor
|
77 |
+
pred_original_sample: Optional[torch.FloatTensor] = None
|
78 |
+
|
79 |
+
|
80 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
81 |
+
def betas_for_alpha_bar(
|
82 |
+
num_diffusion_timesteps,
|
83 |
+
max_beta=0.999,
|
84 |
+
alpha_transform_type="cosine",
|
85 |
+
):
|
86 |
+
"""
|
87 |
+
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
|
88 |
+
(1-beta) over time from t = [0,1].
|
89 |
+
|
90 |
+
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
|
91 |
+
to that part of the diffusion process.
|
92 |
+
|
93 |
+
|
94 |
+
Args:
|
95 |
+
num_diffusion_timesteps (`int`): the number of betas to produce.
|
96 |
+
max_beta (`float`): the maximum beta to use; use values lower than 1 to
|
97 |
+
prevent singularities.
|
98 |
+
alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
|
99 |
+
Choose from `cosine` or `exp`
|
100 |
+
|
101 |
+
Returns:
|
102 |
+
betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
|
103 |
+
"""
|
104 |
+
if alpha_transform_type == "cosine":
|
105 |
+
|
106 |
+
def alpha_bar_fn(t):
|
107 |
+
return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2
|
108 |
+
|
109 |
+
elif alpha_transform_type == "exp":
|
110 |
+
|
111 |
+
def alpha_bar_fn(t):
|
112 |
+
return math.exp(t * -12.0)
|
113 |
+
|
114 |
+
else:
|
115 |
+
raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
|
116 |
+
|
117 |
+
betas = []
|
118 |
+
for i in range(num_diffusion_timesteps):
|
119 |
+
t1 = i / num_diffusion_timesteps
|
120 |
+
t2 = (i + 1) / num_diffusion_timesteps
|
121 |
+
betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
|
122 |
+
return torch.tensor(betas, dtype=torch.float32)
|
123 |
+
|
124 |
+
|
125 |
+
class DDIMScheduler:
|
126 |
+
"""
|
127 |
+
`DDIMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
128 |
+
non-Markovian guidance.
|
129 |
+
|
130 |
+
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
131 |
+
methods the library implements for all schedulers such as loading and saving.
|
132 |
+
|
133 |
+
Args:
|
134 |
+
num_train_timesteps (`int`, defaults to 1000):
|
135 |
+
The number of diffusion steps to train the model.
|
136 |
+
beta_start (`float`, defaults to 0.0001):
|
137 |
+
The starting `beta` value of inference.
|
138 |
+
beta_end (`float`, defaults to 0.02):
|
139 |
+
The final `beta` value.
|
140 |
+
beta_schedule (`str`, defaults to `"linear"`):
|
141 |
+
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
142 |
+
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
143 |
+
trained_betas (`np.ndarray`, *optional*):
|
144 |
+
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
145 |
+
clip_sample (`bool`, defaults to `True`):
|
146 |
+
Clip the predicted sample for numerical stability.
|
147 |
+
clip_sample_range (`float`, defaults to 1.0):
|
148 |
+
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
149 |
+
set_alpha_to_one (`bool`, defaults to `True`):
|
150 |
+
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
151 |
+
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
152 |
+
otherwise it uses the alpha value at step 0.
|
153 |
+
steps_offset (`int`, defaults to 0):
|
154 |
+
An offset added to the inference steps, as required by some model families.
|
155 |
+
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
156 |
+
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
157 |
+
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
158 |
+
Video](https://imagen.research.google/video/paper.pdf) paper).
|
159 |
+
thresholding (`bool`, defaults to `False`):
|
160 |
+
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
161 |
+
as Stable Diffusion.
|
162 |
+
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
163 |
+
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
164 |
+
sample_max_value (`float`, defaults to 1.0):
|
165 |
+
The threshold value for dynamic thresholding. Valid only when `thresholding=True`.
|
166 |
+
timestep_spacing (`str`, defaults to `"leading"`):
|
167 |
+
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
168 |
+
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
169 |
+
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
170 |
+
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
171 |
+
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
172 |
+
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
173 |
+
"""
|
174 |
+
def __init__(
|
175 |
+
self,
|
176 |
+
num_train_timesteps: int = 1000,
|
177 |
+
beta_start: float = 0.0001,
|
178 |
+
beta_end: float = 0.02,
|
179 |
+
beta_schedule: str = "linear",
|
180 |
+
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
181 |
+
clip_sample: bool = True,
|
182 |
+
set_alpha_to_one: bool = True,
|
183 |
+
steps_offset: int = 0,
|
184 |
+
prediction_type: str = "epsilon",
|
185 |
+
thresholding: bool = False,
|
186 |
+
dynamic_thresholding_ratio: float = 0.995,
|
187 |
+
clip_sample_range: float = 1.0,
|
188 |
+
sample_max_value: float = 1.0,
|
189 |
+
timestep_spacing: str = "leading",
|
190 |
+
):
|
191 |
+
|
192 |
+
# Hacky way to replicate diffusers register to config
|
193 |
+
self.config = FrozenDict(
|
194 |
+
{key: value for key, value in locals().items() if key != "self"}
|
195 |
+
)
|
196 |
+
if trained_betas is not None:
|
197 |
+
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
198 |
+
elif beta_schedule == "linear":
|
199 |
+
self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
|
200 |
+
elif beta_schedule == "scaled_linear":
|
201 |
+
# this schedule is very specific to the latent diffusion model.
|
202 |
+
self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
|
203 |
+
elif beta_schedule == "squaredcos_cap_v2":
|
204 |
+
# Glide cosine schedule
|
205 |
+
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
206 |
+
else:
|
207 |
+
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
208 |
+
|
209 |
+
self.alphas = 1.0 - self.betas
|
210 |
+
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
211 |
+
|
212 |
+
# At every step in ddim, we are looking into the previous alphas_cumprod
|
213 |
+
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
214 |
+
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
215 |
+
# whether we use the final alpha of the "non-previous" one.
|
216 |
+
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
217 |
+
|
218 |
+
# standard deviation of the initial noise distribution
|
219 |
+
self.init_noise_sigma = 1.0
|
220 |
+
|
221 |
+
# setable values
|
222 |
+
self.num_inference_steps = None
|
223 |
+
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
224 |
+
|
225 |
+
|
226 |
+
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
227 |
+
"""
|
228 |
+
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
229 |
+
current timestep.
|
230 |
+
|
231 |
+
Args:
|
232 |
+
sample (`torch.FloatTensor`):
|
233 |
+
The input sample.
|
234 |
+
timestep (`int`, *optional*):
|
235 |
+
The current timestep in the diffusion chain.
|
236 |
+
|
237 |
+
Returns:
|
238 |
+
`torch.FloatTensor`:
|
239 |
+
A scaled input sample.
|
240 |
+
"""
|
241 |
+
return sample
|
242 |
+
|
243 |
+
def _get_variance(self, timestep, prev_timestep):
|
244 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
245 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
246 |
+
beta_prod_t = 1 - alpha_prod_t
|
247 |
+
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
248 |
+
|
249 |
+
variance = (beta_prod_t_prev / beta_prod_t) * (1 - alpha_prod_t / alpha_prod_t_prev)
|
250 |
+
|
251 |
+
return variance
|
252 |
+
|
253 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
254 |
+
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
255 |
+
"""
|
256 |
+
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
257 |
+
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
258 |
+
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
259 |
+
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
260 |
+
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
261 |
+
|
262 |
+
https://arxiv.org/abs/2205.11487
|
263 |
+
"""
|
264 |
+
dtype = sample.dtype
|
265 |
+
batch_size, channels, *remaining_dims = sample.shape
|
266 |
+
|
267 |
+
if dtype not in (torch.float32, torch.float64):
|
268 |
+
sample = sample.float() # upcast for quantile calculation, and clamp not implemented for cpu half
|
269 |
+
|
270 |
+
# Flatten sample for doing quantile calculation along each image
|
271 |
+
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
272 |
+
|
273 |
+
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
274 |
+
|
275 |
+
s = torch.quantile(abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
276 |
+
s = torch.clamp(
|
277 |
+
s, min=1, max=self.config.sample_max_value
|
278 |
+
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
279 |
+
s = s.unsqueeze(1) # (batch_size, 1) because clamp will broadcast along dim=0
|
280 |
+
sample = torch.clamp(sample, -s, s) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
281 |
+
|
282 |
+
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
283 |
+
sample = sample.to(dtype)
|
284 |
+
|
285 |
+
return sample
|
286 |
+
|
287 |
+
def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
|
288 |
+
"""
|
289 |
+
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
290 |
+
|
291 |
+
Args:
|
292 |
+
num_inference_steps (`int`):
|
293 |
+
The number of diffusion steps used when generating samples with a pre-trained model.
|
294 |
+
"""
|
295 |
+
|
296 |
+
if num_inference_steps > self.config.num_train_timesteps:
|
297 |
+
raise ValueError(
|
298 |
+
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
299 |
+
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
300 |
+
f" maximal {self.config.num_train_timesteps} timesteps."
|
301 |
+
)
|
302 |
+
|
303 |
+
self.num_inference_steps = num_inference_steps
|
304 |
+
|
305 |
+
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
|
306 |
+
if self.config.timestep_spacing == "linspace":
|
307 |
+
timesteps = (
|
308 |
+
np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps)
|
309 |
+
.round()[::-1]
|
310 |
+
.copy()
|
311 |
+
.astype(np.int64)
|
312 |
+
)
|
313 |
+
elif self.config.timestep_spacing == "leading":
|
314 |
+
step_ratio = self.config.num_train_timesteps // self.num_inference_steps
|
315 |
+
# creates integer timesteps by multiplying by ratio
|
316 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
317 |
+
timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.int64)
|
318 |
+
timesteps += self.config.steps_offset
|
319 |
+
elif self.config.timestep_spacing == "trailing":
|
320 |
+
step_ratio = self.config.num_train_timesteps / self.num_inference_steps
|
321 |
+
# creates integer timesteps by multiplying by ratio
|
322 |
+
# casting to int to avoid issues when num_inference_step is power of 3
|
323 |
+
timesteps = np.round(np.arange(self.config.num_train_timesteps, 0, -step_ratio)).astype(np.int64)
|
324 |
+
timesteps -= 1
|
325 |
+
else:
|
326 |
+
raise ValueError(
|
327 |
+
f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'leading' or 'trailing'."
|
328 |
+
)
|
329 |
+
|
330 |
+
self.timesteps = torch.from_numpy(timesteps).to(device)
|
331 |
+
|
332 |
+
def step(
|
333 |
+
self,
|
334 |
+
model_output: torch.FloatTensor,
|
335 |
+
timestep: int,
|
336 |
+
sample: torch.FloatTensor,
|
337 |
+
eta: float = 0.0,
|
338 |
+
use_clipped_model_output: bool = False,
|
339 |
+
generator=None,
|
340 |
+
variance_noise: Optional[torch.FloatTensor] = None,
|
341 |
+
return_dict: bool = True,
|
342 |
+
original_image = None
|
343 |
+
) -> Union[DDIMSchedulerOutput, Tuple]:
|
344 |
+
"""
|
345 |
+
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
346 |
+
process from the learned model outputs (most often the predicted noise).
|
347 |
+
|
348 |
+
Args:
|
349 |
+
model_output (`torch.FloatTensor`):
|
350 |
+
The direct output from learned diffusion model.
|
351 |
+
timestep (`float`):
|
352 |
+
The current discrete timestep in the diffusion chain.
|
353 |
+
sample (`torch.FloatTensor`):
|
354 |
+
A current instance of a sample created by the diffusion process.
|
355 |
+
eta (`float`):
|
356 |
+
The weight of noise for added noise in diffusion step.
|
357 |
+
use_clipped_model_output (`bool`, defaults to `False`):
|
358 |
+
If `True`, computes "corrected" `model_output` from the clipped predicted original sample. Necessary
|
359 |
+
because predicted original sample is clipped to [-1, 1] when `self.config.clip_sample` is `True`. If no
|
360 |
+
clipping has happened, "corrected" `model_output` would coincide with the one provided as input and
|
361 |
+
`use_clipped_model_output` has no effect.
|
362 |
+
generator (`torch.Generator`, *optional*):
|
363 |
+
A random number generator.
|
364 |
+
variance_noise (`torch.FloatTensor`):
|
365 |
+
Alternative to generating noise with `generator` by directly providing the noise for the variance
|
366 |
+
itself. Useful for methods such as [`CycleDiffusion`].
|
367 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
368 |
+
Whether or not to return a [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] or `tuple`.
|
369 |
+
|
370 |
+
Returns:
|
371 |
+
[`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`:
|
372 |
+
If return_dict is `True`, [`~schedulers.scheduling_ddim.DDIMSchedulerOutput`] is returned, otherwise a
|
373 |
+
tuple is returned where the first element is the sample tensor.
|
374 |
+
|
375 |
+
"""
|
376 |
+
if self.num_inference_steps is None:
|
377 |
+
raise ValueError(
|
378 |
+
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
379 |
+
)
|
380 |
+
|
381 |
+
# See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf
|
382 |
+
# Ideally, read DDIM paper in-detail understanding
|
383 |
+
|
384 |
+
# Notation (<variable name> -> <name in paper>
|
385 |
+
# - pred_noise_t -> e_theta(x_t, t)
|
386 |
+
# - pred_original_sample -> f_theta(x_t, t) or x_0
|
387 |
+
# - std_dev_t -> sigma_t
|
388 |
+
# - eta -> η
|
389 |
+
# - pred_sample_direction -> "direction pointing to x_t"
|
390 |
+
# - pred_prev_sample -> "x_t-1"
|
391 |
+
|
392 |
+
# 1. get previous step value (=t-1)
|
393 |
+
prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps
|
394 |
+
|
395 |
+
# 2. compute alphas, betas
|
396 |
+
alpha_prod_t = self.alphas_cumprod[timestep]
|
397 |
+
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
398 |
+
|
399 |
+
beta_prod_t = 1 - alpha_prod_t
|
400 |
+
|
401 |
+
# 3. compute predicted original sample from predicted noise also called
|
402 |
+
# "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
403 |
+
if self.config.prediction_type == "epsilon":
|
404 |
+
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
405 |
+
pred_epsilon = model_output
|
406 |
+
elif self.config.prediction_type == "sample":
|
407 |
+
pred_original_sample = model_output
|
408 |
+
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
409 |
+
elif self.config.prediction_type == "v_prediction":
|
410 |
+
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
411 |
+
pred_epsilon = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample
|
412 |
+
else:
|
413 |
+
raise ValueError(
|
414 |
+
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or"
|
415 |
+
" `v_prediction`"
|
416 |
+
)
|
417 |
+
|
418 |
+
# 4. Clip or threshold "predicted x_0"
|
419 |
+
if self.config.thresholding:
|
420 |
+
pred_original_sample = self._threshold_sample(pred_original_sample)
|
421 |
+
elif self.config.clip_sample:
|
422 |
+
pred_original_sample = pred_original_sample.clamp(
|
423 |
+
-self.config.clip_sample_range, self.config.clip_sample_range
|
424 |
+
)
|
425 |
+
|
426 |
+
# pred_original_sample[:, :, 128:, :] = original_image[:, :, 128:, :]
|
427 |
+
|
428 |
+
# 5. compute variance: "sigma_t(η)" -> see formula (16)
|
429 |
+
# σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1)
|
430 |
+
variance = self._get_variance(timestep, prev_timestep)
|
431 |
+
std_dev_t = eta * variance ** (0.5)
|
432 |
+
|
433 |
+
if use_clipped_model_output:
|
434 |
+
# the pred_epsilon is always re-derived from the clipped x_0 in Glide
|
435 |
+
pred_epsilon = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5)
|
436 |
+
|
437 |
+
# 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
438 |
+
pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * pred_epsilon
|
439 |
+
|
440 |
+
# 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf
|
441 |
+
prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction
|
442 |
+
|
443 |
+
if eta > 0:
|
444 |
+
if variance_noise is not None and generator is not None:
|
445 |
+
raise ValueError(
|
446 |
+
"Cannot pass both generator and variance_noise. Please make sure that either `generator` or"
|
447 |
+
" `variance_noise` stays `None`."
|
448 |
+
)
|
449 |
+
|
450 |
+
if variance_noise is None:
|
451 |
+
variance_noise = randn_tensor(
|
452 |
+
model_output.shape, generator=generator, device=model_output.device, dtype=model_output.dtype
|
453 |
+
)
|
454 |
+
variance = std_dev_t * variance_noise
|
455 |
+
|
456 |
+
prev_sample = prev_sample + variance
|
457 |
+
|
458 |
+
if not return_dict:
|
459 |
+
return (prev_sample,)
|
460 |
+
|
461 |
+
return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
|
462 |
+
|
463 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
464 |
+
def add_noise(
|
465 |
+
self,
|
466 |
+
original_samples: torch.FloatTensor,
|
467 |
+
noise: torch.FloatTensor,
|
468 |
+
timesteps: torch.IntTensor,
|
469 |
+
) -> torch.FloatTensor:
|
470 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as original_samples
|
471 |
+
# Move the self.alphas_cumprod to device to avoid redundant CPU to GPU data movement
|
472 |
+
# for the subsequent add_noise calls
|
473 |
+
self.alphas_cumprod = self.alphas_cumprod.to(device=original_samples.device)
|
474 |
+
alphas_cumprod = self.alphas_cumprod.to(dtype=original_samples.dtype)
|
475 |
+
timesteps = timesteps.to(original_samples.device)
|
476 |
+
|
477 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
478 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
479 |
+
while len(sqrt_alpha_prod.shape) < len(original_samples.shape):
|
480 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
481 |
+
|
482 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
483 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
484 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(original_samples.shape):
|
485 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
486 |
+
|
487 |
+
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
488 |
+
return noisy_samples
|
489 |
+
|
490 |
+
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
491 |
+
def get_velocity(
|
492 |
+
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
493 |
+
) -> torch.FloatTensor:
|
494 |
+
# Make sure alphas_cumprod and timestep have same device and dtype as sample
|
495 |
+
self.alphas_cumprod = self.alphas_cumprod.to(device=sample.device)
|
496 |
+
alphas_cumprod = self.alphas_cumprod.to(dtype=sample.dtype)
|
497 |
+
timesteps = timesteps.to(sample.device)
|
498 |
+
|
499 |
+
sqrt_alpha_prod = alphas_cumprod[timesteps] ** 0.5
|
500 |
+
sqrt_alpha_prod = sqrt_alpha_prod.flatten()
|
501 |
+
while len(sqrt_alpha_prod.shape) < len(sample.shape):
|
502 |
+
sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)
|
503 |
+
|
504 |
+
sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[timesteps]) ** 0.5
|
505 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
|
506 |
+
while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
|
507 |
+
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)
|
508 |
+
|
509 |
+
velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
|
510 |
+
return velocity
|
511 |
+
|
512 |
+
def __len__(self):
|
513 |
+
return self.config.num_train_timesteps
|
cdim/dps_model/dps_unet.py
ADDED
@@ -0,0 +1,1118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code based on https://github.com/DPS2022/diffusion-posterior-sampling
|
2 |
+
from abc import abstractmethod
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
import torch.nn.functional as F
|
10 |
+
import functools
|
11 |
+
|
12 |
+
from .fp16_util import convert_module_to_f16, convert_module_to_f32
|
13 |
+
from .nn import (
|
14 |
+
checkpoint,
|
15 |
+
conv_nd,
|
16 |
+
linear,
|
17 |
+
avg_pool_nd,
|
18 |
+
zero_module,
|
19 |
+
normalization,
|
20 |
+
timestep_embedding,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
NUM_CLASSES = 1000
|
25 |
+
|
26 |
+
def create_model(
|
27 |
+
image_size,
|
28 |
+
num_channels,
|
29 |
+
num_res_blocks,
|
30 |
+
channel_mult="",
|
31 |
+
learn_sigma=False,
|
32 |
+
class_cond=False,
|
33 |
+
use_checkpoint=False,
|
34 |
+
attention_resolutions="16",
|
35 |
+
num_heads=1,
|
36 |
+
num_head_channels=-1,
|
37 |
+
num_heads_upsample=-1,
|
38 |
+
use_scale_shift_norm=False,
|
39 |
+
dropout=0,
|
40 |
+
resblock_updown=False,
|
41 |
+
use_fp16=False,
|
42 |
+
use_new_attention_order=False,
|
43 |
+
model_path='',
|
44 |
+
):
|
45 |
+
if channel_mult == "":
|
46 |
+
if image_size == 512:
|
47 |
+
channel_mult = (0.5, 1, 1, 2, 2, 4, 4)
|
48 |
+
elif image_size == 256:
|
49 |
+
channel_mult = (1, 1, 2, 2, 4, 4)
|
50 |
+
elif image_size == 128:
|
51 |
+
channel_mult = (1, 1, 2, 3, 4)
|
52 |
+
elif image_size == 64:
|
53 |
+
channel_mult = (1, 2, 3, 4)
|
54 |
+
else:
|
55 |
+
raise ValueError(f"unsupported image size: {image_size}")
|
56 |
+
else:
|
57 |
+
channel_mult = tuple(int(ch_mult) for ch_mult in channel_mult.split(","))
|
58 |
+
|
59 |
+
attention_ds = []
|
60 |
+
if isinstance(attention_resolutions, int):
|
61 |
+
attention_ds.append(image_size // attention_resolutions)
|
62 |
+
elif isinstance(attention_resolutions, str):
|
63 |
+
for res in attention_resolutions.split(","):
|
64 |
+
attention_ds.append(image_size // int(res))
|
65 |
+
else:
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
model= UNetModel(
|
69 |
+
image_size=image_size,
|
70 |
+
in_channels=3,
|
71 |
+
model_channels=num_channels,
|
72 |
+
out_channels=(3 if not learn_sigma else 6),
|
73 |
+
num_res_blocks=num_res_blocks,
|
74 |
+
attention_resolutions=tuple(attention_ds),
|
75 |
+
dropout=dropout,
|
76 |
+
channel_mult=channel_mult,
|
77 |
+
num_classes=(NUM_CLASSES if class_cond else None),
|
78 |
+
use_checkpoint=use_checkpoint,
|
79 |
+
use_fp16=use_fp16,
|
80 |
+
num_heads=num_heads,
|
81 |
+
num_head_channels=num_head_channels,
|
82 |
+
num_heads_upsample=num_heads_upsample,
|
83 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
84 |
+
resblock_updown=resblock_updown,
|
85 |
+
use_new_attention_order=use_new_attention_order,
|
86 |
+
)
|
87 |
+
|
88 |
+
try:
|
89 |
+
model.load_state_dict(th.load(model_path, map_location='cpu'))
|
90 |
+
except Exception as e:
|
91 |
+
print(f"Got exception: {e} / Randomly initialize")
|
92 |
+
return model
|
93 |
+
|
94 |
+
class AttentionPool2d(nn.Module):
|
95 |
+
"""
|
96 |
+
Adapted from CLIP: https://github.com/openai/CLIP/blob/main/clip/model.py
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
spacial_dim: int,
|
102 |
+
embed_dim: int,
|
103 |
+
num_heads_channels: int,
|
104 |
+
output_dim: int = None,
|
105 |
+
):
|
106 |
+
super().__init__()
|
107 |
+
self.positional_embedding = nn.Parameter(
|
108 |
+
th.randn(embed_dim, spacial_dim ** 2 + 1) / embed_dim ** 0.5
|
109 |
+
)
|
110 |
+
self.qkv_proj = conv_nd(1, embed_dim, 3 * embed_dim, 1)
|
111 |
+
self.c_proj = conv_nd(1, embed_dim, output_dim or embed_dim, 1)
|
112 |
+
self.num_heads = embed_dim // num_heads_channels
|
113 |
+
self.attention = QKVAttention(self.num_heads)
|
114 |
+
|
115 |
+
def forward(self, x):
|
116 |
+
b, c, *_spatial = x.shape
|
117 |
+
x = x.reshape(b, c, -1) # NC(HW)
|
118 |
+
x = th.cat([x.mean(dim=-1, keepdim=True), x], dim=-1) # NC(HW+1)
|
119 |
+
x = x + self.positional_embedding[None, :, :].to(x.dtype) # NC(HW+1)
|
120 |
+
x = self.qkv_proj(x)
|
121 |
+
x = self.attention(x)
|
122 |
+
x = self.c_proj(x)
|
123 |
+
return x[:, :, 0]
|
124 |
+
|
125 |
+
|
126 |
+
class TimestepBlock(nn.Module):
|
127 |
+
"""
|
128 |
+
Any module where forward() takes timestep embeddings as a second argument.
|
129 |
+
"""
|
130 |
+
|
131 |
+
@abstractmethod
|
132 |
+
def forward(self, x, emb):
|
133 |
+
"""
|
134 |
+
Apply the module to `x` given `emb` timestep embeddings.
|
135 |
+
"""
|
136 |
+
|
137 |
+
|
138 |
+
class TimestepEmbedSequential(nn.Sequential, TimestepBlock):
|
139 |
+
"""
|
140 |
+
A sequential module that passes timestep embeddings to the children that
|
141 |
+
support it as an extra input.
|
142 |
+
"""
|
143 |
+
|
144 |
+
def forward(self, x, emb):
|
145 |
+
for layer in self:
|
146 |
+
if isinstance(layer, TimestepBlock):
|
147 |
+
x = layer(x, emb)
|
148 |
+
else:
|
149 |
+
x = layer(x)
|
150 |
+
return x
|
151 |
+
|
152 |
+
|
153 |
+
class Upsample(nn.Module):
|
154 |
+
"""
|
155 |
+
An upsampling layer with an optional convolution.
|
156 |
+
|
157 |
+
:param channels: channels in the inputs and outputs.
|
158 |
+
:param use_conv: a bool determining if a convolution is applied.
|
159 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
160 |
+
upsampling occurs in the inner-two dimensions.
|
161 |
+
"""
|
162 |
+
|
163 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
164 |
+
super().__init__()
|
165 |
+
self.channels = channels
|
166 |
+
self.out_channels = out_channels or channels
|
167 |
+
self.use_conv = use_conv
|
168 |
+
self.dims = dims
|
169 |
+
if use_conv:
|
170 |
+
self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1)
|
171 |
+
|
172 |
+
def forward(self, x):
|
173 |
+
assert x.shape[1] == self.channels
|
174 |
+
if self.dims == 3:
|
175 |
+
x = F.interpolate(
|
176 |
+
x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest"
|
177 |
+
)
|
178 |
+
else:
|
179 |
+
x = F.interpolate(x, scale_factor=2, mode="nearest")
|
180 |
+
if self.use_conv:
|
181 |
+
x = self.conv(x)
|
182 |
+
return x
|
183 |
+
|
184 |
+
|
185 |
+
class Downsample(nn.Module):
|
186 |
+
"""
|
187 |
+
A downsampling layer with an optional convolution.
|
188 |
+
|
189 |
+
:param channels: channels in the inputs and outputs.
|
190 |
+
:param use_conv: a bool determining if a convolution is applied.
|
191 |
+
:param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then
|
192 |
+
downsampling occurs in the inner-two dimensions.
|
193 |
+
"""
|
194 |
+
|
195 |
+
def __init__(self, channels, use_conv, dims=2, out_channels=None):
|
196 |
+
super().__init__()
|
197 |
+
self.channels = channels
|
198 |
+
self.out_channels = out_channels or channels
|
199 |
+
self.use_conv = use_conv
|
200 |
+
self.dims = dims
|
201 |
+
stride = 2 if dims != 3 else (1, 2, 2)
|
202 |
+
if use_conv:
|
203 |
+
self.op = conv_nd(
|
204 |
+
dims, self.channels, self.out_channels, 3, stride=stride, padding=1
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
assert self.channels == self.out_channels
|
208 |
+
self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride)
|
209 |
+
|
210 |
+
def forward(self, x):
|
211 |
+
assert x.shape[1] == self.channels
|
212 |
+
return self.op(x)
|
213 |
+
|
214 |
+
|
215 |
+
class ResBlock(TimestepBlock):
|
216 |
+
"""
|
217 |
+
A residual block that can optionally change the number of channels.
|
218 |
+
|
219 |
+
:param channels: the number of input channels.
|
220 |
+
:param emb_channels: the number of timestep embedding channels.
|
221 |
+
:param dropout: the rate of dropout.
|
222 |
+
:param out_channels: if specified, the number of out channels.
|
223 |
+
:param use_conv: if True and out_channels is specified, use a spatial
|
224 |
+
convolution instead of a smaller 1x1 convolution to change the
|
225 |
+
channels in the skip connection.
|
226 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
227 |
+
:param use_checkpoint: if True, use gradient checkpointing on this module.
|
228 |
+
:param up: if True, use this block for upsampling.
|
229 |
+
:param down: if True, use this block for downsampling.
|
230 |
+
"""
|
231 |
+
|
232 |
+
def __init__(
|
233 |
+
self,
|
234 |
+
channels,
|
235 |
+
emb_channels,
|
236 |
+
dropout,
|
237 |
+
out_channels=None,
|
238 |
+
use_conv=False,
|
239 |
+
use_scale_shift_norm=False,
|
240 |
+
dims=2,
|
241 |
+
use_checkpoint=False,
|
242 |
+
up=False,
|
243 |
+
down=False,
|
244 |
+
):
|
245 |
+
super().__init__()
|
246 |
+
self.channels = channels
|
247 |
+
self.emb_channels = emb_channels
|
248 |
+
self.dropout = dropout
|
249 |
+
self.out_channels = out_channels or channels
|
250 |
+
self.use_conv = use_conv
|
251 |
+
self.use_checkpoint = use_checkpoint
|
252 |
+
self.use_scale_shift_norm = use_scale_shift_norm
|
253 |
+
|
254 |
+
self.in_layers = nn.Sequential(
|
255 |
+
normalization(channels),
|
256 |
+
nn.SiLU(),
|
257 |
+
conv_nd(dims, channels, self.out_channels, 3, padding=1),
|
258 |
+
)
|
259 |
+
|
260 |
+
self.updown = up or down
|
261 |
+
|
262 |
+
if up:
|
263 |
+
self.h_upd = Upsample(channels, False, dims)
|
264 |
+
self.x_upd = Upsample(channels, False, dims)
|
265 |
+
elif down:
|
266 |
+
self.h_upd = Downsample(channels, False, dims)
|
267 |
+
self.x_upd = Downsample(channels, False, dims)
|
268 |
+
else:
|
269 |
+
self.h_upd = self.x_upd = nn.Identity()
|
270 |
+
|
271 |
+
self.emb_layers = nn.Sequential(
|
272 |
+
nn.SiLU(),
|
273 |
+
linear(
|
274 |
+
emb_channels,
|
275 |
+
2 * self.out_channels if use_scale_shift_norm else self.out_channels,
|
276 |
+
),
|
277 |
+
)
|
278 |
+
self.out_layers = nn.Sequential(
|
279 |
+
normalization(self.out_channels),
|
280 |
+
nn.SiLU(),
|
281 |
+
nn.Dropout(p=dropout),
|
282 |
+
zero_module(
|
283 |
+
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)
|
284 |
+
),
|
285 |
+
)
|
286 |
+
|
287 |
+
if self.out_channels == channels:
|
288 |
+
self.skip_connection = nn.Identity()
|
289 |
+
elif use_conv:
|
290 |
+
self.skip_connection = conv_nd(
|
291 |
+
dims, channels, self.out_channels, 3, padding=1
|
292 |
+
)
|
293 |
+
else:
|
294 |
+
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1)
|
295 |
+
|
296 |
+
def forward(self, x, emb):
|
297 |
+
"""
|
298 |
+
Apply the block to a Tensor, conditioned on a timestep embedding.
|
299 |
+
|
300 |
+
:param x: an [N x C x ...] Tensor of features.
|
301 |
+
:param emb: an [N x emb_channels] Tensor of timestep embeddings.
|
302 |
+
:return: an [N x C x ...] Tensor of outputs.
|
303 |
+
"""
|
304 |
+
return checkpoint(
|
305 |
+
self._forward, (x, emb), self.parameters(), self.use_checkpoint
|
306 |
+
)
|
307 |
+
|
308 |
+
def _forward(self, x, emb):
|
309 |
+
if self.updown:
|
310 |
+
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
311 |
+
h = in_rest(x)
|
312 |
+
h = self.h_upd(h)
|
313 |
+
x = self.x_upd(x)
|
314 |
+
h = in_conv(h)
|
315 |
+
else:
|
316 |
+
h = self.in_layers(x)
|
317 |
+
emb_out = self.emb_layers(emb).type(h.dtype)
|
318 |
+
while len(emb_out.shape) < len(h.shape):
|
319 |
+
emb_out = emb_out[..., None]
|
320 |
+
if self.use_scale_shift_norm:
|
321 |
+
out_norm, out_rest = self.out_layers[0], self.out_layers[1:]
|
322 |
+
scale, shift = th.chunk(emb_out, 2, dim=1)
|
323 |
+
h = out_norm(h) * (1 + scale) + shift
|
324 |
+
h = out_rest(h)
|
325 |
+
else:
|
326 |
+
h = h + emb_out
|
327 |
+
h = self.out_layers(h)
|
328 |
+
return self.skip_connection(x) + h
|
329 |
+
|
330 |
+
|
331 |
+
class AttentionBlock(nn.Module):
|
332 |
+
"""
|
333 |
+
An attention block that allows spatial positions to attend to each other.
|
334 |
+
|
335 |
+
Originally ported from here, but adapted to the N-d case.
|
336 |
+
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66.
|
337 |
+
"""
|
338 |
+
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
channels,
|
342 |
+
num_heads=1,
|
343 |
+
num_head_channels=-1,
|
344 |
+
use_checkpoint=False,
|
345 |
+
use_new_attention_order=False,
|
346 |
+
):
|
347 |
+
super().__init__()
|
348 |
+
self.channels = channels
|
349 |
+
if num_head_channels == -1:
|
350 |
+
self.num_heads = num_heads
|
351 |
+
else:
|
352 |
+
assert (
|
353 |
+
channels % num_head_channels == 0
|
354 |
+
), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
|
355 |
+
self.num_heads = channels // num_head_channels
|
356 |
+
self.use_checkpoint = use_checkpoint
|
357 |
+
self.norm = normalization(channels)
|
358 |
+
self.qkv = conv_nd(1, channels, channels * 3, 1)
|
359 |
+
if use_new_attention_order:
|
360 |
+
# split qkv before split heads
|
361 |
+
self.attention = QKVAttention(self.num_heads)
|
362 |
+
else:
|
363 |
+
# split heads before split qkv
|
364 |
+
self.attention = QKVAttentionLegacy(self.num_heads)
|
365 |
+
|
366 |
+
self.proj_out = zero_module(conv_nd(1, channels, channels, 1))
|
367 |
+
|
368 |
+
def forward(self, x):
|
369 |
+
return checkpoint(self._forward, (x,), self.parameters(), True)
|
370 |
+
|
371 |
+
def _forward(self, x):
|
372 |
+
b, c, *spatial = x.shape
|
373 |
+
x = x.reshape(b, c, -1)
|
374 |
+
qkv = self.qkv(self.norm(x))
|
375 |
+
h = self.attention(qkv)
|
376 |
+
h = self.proj_out(h)
|
377 |
+
return (x + h).reshape(b, c, *spatial)
|
378 |
+
|
379 |
+
|
380 |
+
def count_flops_attn(model, _x, y):
|
381 |
+
"""
|
382 |
+
A counter for the `thop` package to count the operations in an
|
383 |
+
attention operation.
|
384 |
+
Meant to be used like:
|
385 |
+
macs, params = thop.profile(
|
386 |
+
model,
|
387 |
+
inputs=(inputs, timestamps),
|
388 |
+
custom_ops={QKVAttention: QKVAttention.count_flops},
|
389 |
+
)
|
390 |
+
"""
|
391 |
+
b, c, *spatial = y[0].shape
|
392 |
+
num_spatial = int(np.prod(spatial))
|
393 |
+
# We perform two matmuls with the same number of ops.
|
394 |
+
# The first computes the weight matrix, the second computes
|
395 |
+
# the combination of the value vectors.
|
396 |
+
matmul_ops = 2 * b * (num_spatial ** 2) * c
|
397 |
+
model.total_ops += th.DoubleTensor([matmul_ops])
|
398 |
+
|
399 |
+
|
400 |
+
class QKVAttentionLegacy(nn.Module):
|
401 |
+
"""
|
402 |
+
A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping
|
403 |
+
"""
|
404 |
+
|
405 |
+
def __init__(self, n_heads):
|
406 |
+
super().__init__()
|
407 |
+
self.n_heads = n_heads
|
408 |
+
|
409 |
+
def forward(self, qkv):
|
410 |
+
"""
|
411 |
+
Apply QKV attention.
|
412 |
+
|
413 |
+
:param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs.
|
414 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
415 |
+
"""
|
416 |
+
bs, width, length = qkv.shape
|
417 |
+
assert width % (3 * self.n_heads) == 0
|
418 |
+
ch = width // (3 * self.n_heads)
|
419 |
+
q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1)
|
420 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
421 |
+
weight = th.einsum(
|
422 |
+
"bct,bcs->bts", q * scale, k * scale
|
423 |
+
) # More stable with f16 than dividing afterwards
|
424 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
425 |
+
a = th.einsum("bts,bcs->bct", weight, v)
|
426 |
+
return a.reshape(bs, -1, length)
|
427 |
+
|
428 |
+
@staticmethod
|
429 |
+
def count_flops(model, _x, y):
|
430 |
+
return count_flops_attn(model, _x, y)
|
431 |
+
|
432 |
+
|
433 |
+
class QKVAttention(nn.Module):
|
434 |
+
"""
|
435 |
+
A module which performs QKV attention and splits in a different order.
|
436 |
+
"""
|
437 |
+
|
438 |
+
def __init__(self, n_heads):
|
439 |
+
super().__init__()
|
440 |
+
self.n_heads = n_heads
|
441 |
+
|
442 |
+
def forward(self, qkv):
|
443 |
+
"""
|
444 |
+
Apply QKV attention.
|
445 |
+
|
446 |
+
:param qkv: an [N x (3 * H * C) x T] tensor of Qs, Ks, and Vs.
|
447 |
+
:return: an [N x (H * C) x T] tensor after attention.
|
448 |
+
"""
|
449 |
+
bs, width, length = qkv.shape
|
450 |
+
assert width % (3 * self.n_heads) == 0
|
451 |
+
ch = width // (3 * self.n_heads)
|
452 |
+
q, k, v = qkv.chunk(3, dim=1)
|
453 |
+
scale = 1 / math.sqrt(math.sqrt(ch))
|
454 |
+
weight = th.einsum(
|
455 |
+
"bct,bcs->bts",
|
456 |
+
(q * scale).view(bs * self.n_heads, ch, length),
|
457 |
+
(k * scale).view(bs * self.n_heads, ch, length),
|
458 |
+
) # More stable with f16 than dividing afterwards
|
459 |
+
weight = th.softmax(weight.float(), dim=-1).type(weight.dtype)
|
460 |
+
a = th.einsum("bts,bcs->bct", weight, v.reshape(bs * self.n_heads, ch, length))
|
461 |
+
return a.reshape(bs, -1, length)
|
462 |
+
|
463 |
+
@staticmethod
|
464 |
+
def count_flops(model, _x, y):
|
465 |
+
return count_flops_attn(model, _x, y)
|
466 |
+
|
467 |
+
|
468 |
+
class UNetModel(nn.Module):
|
469 |
+
"""
|
470 |
+
The full UNet model with attention and timestep embedding.
|
471 |
+
|
472 |
+
:param in_channels: channels in the input Tensor.
|
473 |
+
:param model_channels: base channel count for the model.
|
474 |
+
:param out_channels: channels in the output Tensor.
|
475 |
+
:param num_res_blocks: number of residual blocks per downsample.
|
476 |
+
:param attention_resolutions: a collection of downsample rates at which
|
477 |
+
attention will take place. May be a set, list, or tuple.
|
478 |
+
For example, if this contains 4, then at 4x downsampling, attention
|
479 |
+
will be used.
|
480 |
+
:param dropout: the dropout probability.
|
481 |
+
:param channel_mult: channel multiplier for each level of the UNet.
|
482 |
+
:param conv_resample: if True, use learned convolutions for upsampling and
|
483 |
+
downsampling.
|
484 |
+
:param dims: determines if the signal is 1D, 2D, or 3D.
|
485 |
+
:param num_classes: if specified (as an int), then this model will be
|
486 |
+
class-conditional with `num_classes` classes.
|
487 |
+
:param use_checkpoint: use gradient checkpointing to reduce memory usage.
|
488 |
+
:param num_heads: the number of attention heads in each attention layer.
|
489 |
+
:param num_heads_channels: if specified, ignore num_heads and instead use
|
490 |
+
a fixed channel width per attention head.
|
491 |
+
:param num_heads_upsample: works with num_heads to set a different number
|
492 |
+
of heads for upsampling. Deprecated.
|
493 |
+
:param use_scale_shift_norm: use a FiLM-like conditioning mechanism.
|
494 |
+
:param resblock_updown: use residual blocks for up/downsampling.
|
495 |
+
:param use_new_attention_order: use a different attention pattern for potentially
|
496 |
+
increased efficiency.
|
497 |
+
"""
|
498 |
+
|
499 |
+
def __init__(
|
500 |
+
self,
|
501 |
+
image_size,
|
502 |
+
in_channels,
|
503 |
+
model_channels,
|
504 |
+
out_channels,
|
505 |
+
num_res_blocks,
|
506 |
+
attention_resolutions,
|
507 |
+
dropout=0,
|
508 |
+
channel_mult=(1, 2, 4, 8),
|
509 |
+
conv_resample=True,
|
510 |
+
dims=2,
|
511 |
+
num_classes=None,
|
512 |
+
use_checkpoint=False,
|
513 |
+
use_fp16=False,
|
514 |
+
num_heads=1,
|
515 |
+
num_head_channels=-1,
|
516 |
+
num_heads_upsample=-1,
|
517 |
+
use_scale_shift_norm=False,
|
518 |
+
resblock_updown=False,
|
519 |
+
use_new_attention_order=False,
|
520 |
+
):
|
521 |
+
super().__init__()
|
522 |
+
|
523 |
+
if num_heads_upsample == -1:
|
524 |
+
num_heads_upsample = num_heads
|
525 |
+
|
526 |
+
self.image_size = image_size
|
527 |
+
self.in_channels = in_channels
|
528 |
+
self.model_channels = model_channels
|
529 |
+
self.out_channels = out_channels
|
530 |
+
self.num_res_blocks = num_res_blocks
|
531 |
+
self.attention_resolutions = attention_resolutions
|
532 |
+
self.dropout = dropout
|
533 |
+
self.channel_mult = channel_mult
|
534 |
+
self.conv_resample = conv_resample
|
535 |
+
self.num_classes = num_classes
|
536 |
+
self.use_checkpoint = use_checkpoint
|
537 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
538 |
+
self.num_heads = num_heads
|
539 |
+
self.num_head_channels = num_head_channels
|
540 |
+
self.num_heads_upsample = num_heads_upsample
|
541 |
+
|
542 |
+
time_embed_dim = model_channels * 4
|
543 |
+
self.time_embed = nn.Sequential(
|
544 |
+
linear(model_channels, time_embed_dim),
|
545 |
+
nn.SiLU(),
|
546 |
+
linear(time_embed_dim, time_embed_dim),
|
547 |
+
)
|
548 |
+
|
549 |
+
if self.num_classes is not None:
|
550 |
+
self.label_emb = nn.Embedding(num_classes, time_embed_dim)
|
551 |
+
|
552 |
+
ch = input_ch = int(channel_mult[0] * model_channels)
|
553 |
+
self.input_blocks = nn.ModuleList(
|
554 |
+
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
|
555 |
+
)
|
556 |
+
self._feature_size = ch
|
557 |
+
input_block_chans = [ch]
|
558 |
+
ds = 1
|
559 |
+
for level, mult in enumerate(channel_mult):
|
560 |
+
for _ in range(num_res_blocks):
|
561 |
+
layers = [
|
562 |
+
ResBlock(
|
563 |
+
ch,
|
564 |
+
time_embed_dim,
|
565 |
+
dropout,
|
566 |
+
out_channels=int(mult * model_channels),
|
567 |
+
dims=dims,
|
568 |
+
use_checkpoint=use_checkpoint,
|
569 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
570 |
+
)
|
571 |
+
]
|
572 |
+
ch = int(mult * model_channels)
|
573 |
+
if ds in attention_resolutions:
|
574 |
+
layers.append(
|
575 |
+
AttentionBlock(
|
576 |
+
ch,
|
577 |
+
use_checkpoint=use_checkpoint,
|
578 |
+
num_heads=num_heads,
|
579 |
+
num_head_channels=num_head_channels,
|
580 |
+
use_new_attention_order=use_new_attention_order,
|
581 |
+
)
|
582 |
+
)
|
583 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
584 |
+
self._feature_size += ch
|
585 |
+
input_block_chans.append(ch)
|
586 |
+
if level != len(channel_mult) - 1:
|
587 |
+
out_ch = ch
|
588 |
+
self.input_blocks.append(
|
589 |
+
TimestepEmbedSequential(
|
590 |
+
ResBlock(
|
591 |
+
ch,
|
592 |
+
time_embed_dim,
|
593 |
+
dropout,
|
594 |
+
out_channels=out_ch,
|
595 |
+
dims=dims,
|
596 |
+
use_checkpoint=use_checkpoint,
|
597 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
598 |
+
down=True,
|
599 |
+
)
|
600 |
+
if resblock_updown
|
601 |
+
else Downsample(
|
602 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
603 |
+
)
|
604 |
+
)
|
605 |
+
)
|
606 |
+
ch = out_ch
|
607 |
+
input_block_chans.append(ch)
|
608 |
+
ds *= 2
|
609 |
+
self._feature_size += ch
|
610 |
+
|
611 |
+
self.middle_block = TimestepEmbedSequential(
|
612 |
+
ResBlock(
|
613 |
+
ch,
|
614 |
+
time_embed_dim,
|
615 |
+
dropout,
|
616 |
+
dims=dims,
|
617 |
+
use_checkpoint=use_checkpoint,
|
618 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
619 |
+
),
|
620 |
+
AttentionBlock(
|
621 |
+
ch,
|
622 |
+
use_checkpoint=use_checkpoint,
|
623 |
+
num_heads=num_heads,
|
624 |
+
num_head_channels=num_head_channels,
|
625 |
+
use_new_attention_order=use_new_attention_order,
|
626 |
+
),
|
627 |
+
ResBlock(
|
628 |
+
ch,
|
629 |
+
time_embed_dim,
|
630 |
+
dropout,
|
631 |
+
dims=dims,
|
632 |
+
use_checkpoint=use_checkpoint,
|
633 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
634 |
+
),
|
635 |
+
)
|
636 |
+
self._feature_size += ch
|
637 |
+
|
638 |
+
self.output_blocks = nn.ModuleList([])
|
639 |
+
for level, mult in list(enumerate(channel_mult))[::-1]:
|
640 |
+
for i in range(num_res_blocks + 1):
|
641 |
+
ich = input_block_chans.pop()
|
642 |
+
layers = [
|
643 |
+
ResBlock(
|
644 |
+
ch + ich,
|
645 |
+
time_embed_dim,
|
646 |
+
dropout,
|
647 |
+
out_channels=int(model_channels * mult),
|
648 |
+
dims=dims,
|
649 |
+
use_checkpoint=use_checkpoint,
|
650 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
651 |
+
)
|
652 |
+
]
|
653 |
+
ch = int(model_channels * mult)
|
654 |
+
if ds in attention_resolutions:
|
655 |
+
layers.append(
|
656 |
+
AttentionBlock(
|
657 |
+
ch,
|
658 |
+
use_checkpoint=use_checkpoint,
|
659 |
+
num_heads=num_heads_upsample,
|
660 |
+
num_head_channels=num_head_channels,
|
661 |
+
use_new_attention_order=use_new_attention_order,
|
662 |
+
)
|
663 |
+
)
|
664 |
+
if level and i == num_res_blocks:
|
665 |
+
out_ch = ch
|
666 |
+
layers.append(
|
667 |
+
ResBlock(
|
668 |
+
ch,
|
669 |
+
time_embed_dim,
|
670 |
+
dropout,
|
671 |
+
out_channels=out_ch,
|
672 |
+
dims=dims,
|
673 |
+
use_checkpoint=use_checkpoint,
|
674 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
675 |
+
up=True,
|
676 |
+
)
|
677 |
+
if resblock_updown
|
678 |
+
else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch)
|
679 |
+
)
|
680 |
+
ds //= 2
|
681 |
+
self.output_blocks.append(TimestepEmbedSequential(*layers))
|
682 |
+
self._feature_size += ch
|
683 |
+
|
684 |
+
self.out = nn.Sequential(
|
685 |
+
normalization(ch),
|
686 |
+
nn.SiLU(),
|
687 |
+
zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)),
|
688 |
+
)
|
689 |
+
|
690 |
+
def convert_to_fp16(self):
|
691 |
+
"""
|
692 |
+
Convert the torso of the model to float16.
|
693 |
+
"""
|
694 |
+
self.input_blocks.apply(convert_module_to_f16)
|
695 |
+
self.middle_block.apply(convert_module_to_f16)
|
696 |
+
self.output_blocks.apply(convert_module_to_f16)
|
697 |
+
|
698 |
+
def convert_to_fp32(self):
|
699 |
+
"""
|
700 |
+
Convert the torso of the model to float32.
|
701 |
+
"""
|
702 |
+
self.input_blocks.apply(convert_module_to_f32)
|
703 |
+
self.middle_block.apply(convert_module_to_f32)
|
704 |
+
self.output_blocks.apply(convert_module_to_f32)
|
705 |
+
|
706 |
+
def forward(self, x, timesteps, y=None):
|
707 |
+
"""
|
708 |
+
Apply the model to an input batch.
|
709 |
+
|
710 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
711 |
+
:param timesteps: a 1-D batch of timesteps.
|
712 |
+
:param y: an [N] Tensor of labels, if class-conditional.
|
713 |
+
:return: an [N x C x ...] Tensor of outputs.
|
714 |
+
"""
|
715 |
+
assert (y is not None) == (
|
716 |
+
self.num_classes is not None
|
717 |
+
), "must specify y if and only if the model is class-conditional"
|
718 |
+
|
719 |
+
hs = []
|
720 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
721 |
+
|
722 |
+
if self.num_classes is not None:
|
723 |
+
assert y.shape == (x.shape[0],)
|
724 |
+
emb = emb + self.label_emb(y)
|
725 |
+
|
726 |
+
h = x.type(self.dtype)
|
727 |
+
for module in self.input_blocks:
|
728 |
+
h = module(h, emb)
|
729 |
+
hs.append(h)
|
730 |
+
h = self.middle_block(h, emb)
|
731 |
+
for module in self.output_blocks:
|
732 |
+
h = th.cat([h, hs.pop()], dim=1)
|
733 |
+
h = module(h, emb)
|
734 |
+
h = h.type(x.dtype)
|
735 |
+
return self.out(h)
|
736 |
+
|
737 |
+
|
738 |
+
class SuperResModel(UNetModel):
|
739 |
+
"""
|
740 |
+
A UNetModel that performs super-resolution.
|
741 |
+
|
742 |
+
Expects an extra kwarg `low_res` to condition on a low-resolution image.
|
743 |
+
"""
|
744 |
+
|
745 |
+
def __init__(self, image_size, in_channels, *args, **kwargs):
|
746 |
+
super().__init__(image_size, in_channels * 2, *args, **kwargs)
|
747 |
+
|
748 |
+
def forward(self, x, timesteps, low_res=None, **kwargs):
|
749 |
+
_, _, new_height, new_width = x.shape
|
750 |
+
upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear")
|
751 |
+
x = th.cat([x, upsampled], dim=1)
|
752 |
+
return super().forward(x, timesteps, **kwargs)
|
753 |
+
|
754 |
+
|
755 |
+
class EncoderUNetModel(nn.Module):
|
756 |
+
"""
|
757 |
+
The half UNet model with attention and timestep embedding.
|
758 |
+
|
759 |
+
For usage, see UNet.
|
760 |
+
"""
|
761 |
+
|
762 |
+
def __init__(
|
763 |
+
self,
|
764 |
+
image_size,
|
765 |
+
in_channels,
|
766 |
+
model_channels,
|
767 |
+
out_channels,
|
768 |
+
num_res_blocks,
|
769 |
+
attention_resolutions,
|
770 |
+
dropout=0,
|
771 |
+
channel_mult=(1, 2, 4, 8),
|
772 |
+
conv_resample=True,
|
773 |
+
dims=2,
|
774 |
+
use_checkpoint=False,
|
775 |
+
use_fp16=False,
|
776 |
+
num_heads=1,
|
777 |
+
num_head_channels=-1,
|
778 |
+
num_heads_upsample=-1,
|
779 |
+
use_scale_shift_norm=False,
|
780 |
+
resblock_updown=False,
|
781 |
+
use_new_attention_order=False,
|
782 |
+
pool="adaptive",
|
783 |
+
):
|
784 |
+
super().__init__()
|
785 |
+
|
786 |
+
if num_heads_upsample == -1:
|
787 |
+
num_heads_upsample = num_heads
|
788 |
+
|
789 |
+
self.in_channels = in_channels
|
790 |
+
self.model_channels = model_channels
|
791 |
+
self.out_channels = out_channels
|
792 |
+
self.num_res_blocks = num_res_blocks
|
793 |
+
self.attention_resolutions = attention_resolutions
|
794 |
+
self.dropout = dropout
|
795 |
+
self.channel_mult = channel_mult
|
796 |
+
self.conv_resample = conv_resample
|
797 |
+
self.use_checkpoint = use_checkpoint
|
798 |
+
self.dtype = th.float16 if use_fp16 else th.float32
|
799 |
+
self.num_heads = num_heads
|
800 |
+
self.num_head_channels = num_head_channels
|
801 |
+
self.num_heads_upsample = num_heads_upsample
|
802 |
+
|
803 |
+
time_embed_dim = model_channels * 4
|
804 |
+
self.time_embed = nn.Sequential(
|
805 |
+
linear(model_channels, time_embed_dim),
|
806 |
+
nn.SiLU(),
|
807 |
+
linear(time_embed_dim, time_embed_dim),
|
808 |
+
)
|
809 |
+
|
810 |
+
ch = int(channel_mult[0] * model_channels)
|
811 |
+
self.input_blocks = nn.ModuleList(
|
812 |
+
[TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))]
|
813 |
+
)
|
814 |
+
self._feature_size = ch
|
815 |
+
input_block_chans = [ch]
|
816 |
+
ds = 1
|
817 |
+
for level, mult in enumerate(channel_mult):
|
818 |
+
for _ in range(num_res_blocks):
|
819 |
+
layers = [
|
820 |
+
ResBlock(
|
821 |
+
ch,
|
822 |
+
time_embed_dim,
|
823 |
+
dropout,
|
824 |
+
out_channels=int(mult * model_channels),
|
825 |
+
dims=dims,
|
826 |
+
use_checkpoint=use_checkpoint,
|
827 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
828 |
+
)
|
829 |
+
]
|
830 |
+
ch = int(mult * model_channels)
|
831 |
+
if ds in attention_resolutions:
|
832 |
+
layers.append(
|
833 |
+
AttentionBlock(
|
834 |
+
ch,
|
835 |
+
use_checkpoint=use_checkpoint,
|
836 |
+
num_heads=num_heads,
|
837 |
+
num_head_channels=num_head_channels,
|
838 |
+
use_new_attention_order=use_new_attention_order,
|
839 |
+
)
|
840 |
+
)
|
841 |
+
self.input_blocks.append(TimestepEmbedSequential(*layers))
|
842 |
+
self._feature_size += ch
|
843 |
+
input_block_chans.append(ch)
|
844 |
+
if level != len(channel_mult) - 1:
|
845 |
+
out_ch = ch
|
846 |
+
self.input_blocks.append(
|
847 |
+
TimestepEmbedSequential(
|
848 |
+
ResBlock(
|
849 |
+
ch,
|
850 |
+
time_embed_dim,
|
851 |
+
dropout,
|
852 |
+
out_channels=out_ch,
|
853 |
+
dims=dims,
|
854 |
+
use_checkpoint=use_checkpoint,
|
855 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
856 |
+
down=True,
|
857 |
+
)
|
858 |
+
if resblock_updown
|
859 |
+
else Downsample(
|
860 |
+
ch, conv_resample, dims=dims, out_channels=out_ch
|
861 |
+
)
|
862 |
+
)
|
863 |
+
)
|
864 |
+
ch = out_ch
|
865 |
+
input_block_chans.append(ch)
|
866 |
+
ds *= 2
|
867 |
+
self._feature_size += ch
|
868 |
+
|
869 |
+
self.middle_block = TimestepEmbedSequential(
|
870 |
+
ResBlock(
|
871 |
+
ch,
|
872 |
+
time_embed_dim,
|
873 |
+
dropout,
|
874 |
+
dims=dims,
|
875 |
+
use_checkpoint=use_checkpoint,
|
876 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
877 |
+
),
|
878 |
+
AttentionBlock(
|
879 |
+
ch,
|
880 |
+
use_checkpoint=use_checkpoint,
|
881 |
+
num_heads=num_heads,
|
882 |
+
num_head_channels=num_head_channels,
|
883 |
+
use_new_attention_order=use_new_attention_order,
|
884 |
+
),
|
885 |
+
ResBlock(
|
886 |
+
ch,
|
887 |
+
time_embed_dim,
|
888 |
+
dropout,
|
889 |
+
dims=dims,
|
890 |
+
use_checkpoint=use_checkpoint,
|
891 |
+
use_scale_shift_norm=use_scale_shift_norm,
|
892 |
+
),
|
893 |
+
)
|
894 |
+
self._feature_size += ch
|
895 |
+
self.pool = pool
|
896 |
+
if pool == "adaptive":
|
897 |
+
self.out = nn.Sequential(
|
898 |
+
normalization(ch),
|
899 |
+
nn.SiLU(),
|
900 |
+
nn.AdaptiveAvgPool2d((1, 1)),
|
901 |
+
zero_module(conv_nd(dims, ch, out_channels, 1)),
|
902 |
+
nn.Flatten(),
|
903 |
+
)
|
904 |
+
elif pool == "attention":
|
905 |
+
assert num_head_channels != -1
|
906 |
+
self.out = nn.Sequential(
|
907 |
+
normalization(ch),
|
908 |
+
nn.SiLU(),
|
909 |
+
AttentionPool2d(
|
910 |
+
(image_size // ds), ch, num_head_channels, out_channels
|
911 |
+
),
|
912 |
+
)
|
913 |
+
elif pool == "spatial":
|
914 |
+
self.out = nn.Sequential(
|
915 |
+
nn.Linear(self._feature_size, 2048),
|
916 |
+
nn.ReLU(),
|
917 |
+
nn.Linear(2048, self.out_channels),
|
918 |
+
)
|
919 |
+
elif pool == "spatial_v2":
|
920 |
+
self.out = nn.Sequential(
|
921 |
+
nn.Linear(self._feature_size, 2048),
|
922 |
+
normalization(2048),
|
923 |
+
nn.SiLU(),
|
924 |
+
nn.Linear(2048, self.out_channels),
|
925 |
+
)
|
926 |
+
else:
|
927 |
+
raise NotImplementedError(f"Unexpected {pool} pooling")
|
928 |
+
|
929 |
+
def convert_to_fp16(self):
|
930 |
+
"""
|
931 |
+
Convert the torso of the model to float16.
|
932 |
+
"""
|
933 |
+
self.input_blocks.apply(convert_module_to_f16)
|
934 |
+
self.middle_block.apply(convert_module_to_f16)
|
935 |
+
|
936 |
+
def convert_to_fp32(self):
|
937 |
+
"""
|
938 |
+
Convert the torso of the model to float32.
|
939 |
+
"""
|
940 |
+
self.input_blocks.apply(convert_module_to_f32)
|
941 |
+
self.middle_block.apply(convert_module_to_f32)
|
942 |
+
|
943 |
+
def forward(self, x, timesteps):
|
944 |
+
"""
|
945 |
+
Apply the model to an input batch.
|
946 |
+
|
947 |
+
:param x: an [N x C x ...] Tensor of inputs.
|
948 |
+
:param timesteps: a 1-D batch of timesteps.
|
949 |
+
:return: an [N x K] Tensor of outputs.
|
950 |
+
"""
|
951 |
+
emb = self.time_embed(timestep_embedding(timesteps, self.model_channels))
|
952 |
+
|
953 |
+
results = []
|
954 |
+
h = x.type(self.dtype)
|
955 |
+
for module in self.input_blocks:
|
956 |
+
h = module(h, emb)
|
957 |
+
if self.pool.startswith("spatial"):
|
958 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
959 |
+
h = self.middle_block(h, emb)
|
960 |
+
if self.pool.startswith("spatial"):
|
961 |
+
results.append(h.type(x.dtype).mean(dim=(2, 3)))
|
962 |
+
h = th.cat(results, axis=-1)
|
963 |
+
return self.out(h)
|
964 |
+
else:
|
965 |
+
h = h.type(x.dtype)
|
966 |
+
return self.out(h)
|
967 |
+
|
968 |
+
|
969 |
+
class NLayerDiscriminator(nn.Module):
|
970 |
+
def __init__(self, input_nc, ndf=64, n_layers=3, norm_layer=nn.BatchNorm2d, use_sigmoid=False):
|
971 |
+
super(NLayerDiscriminator, self).__init__()
|
972 |
+
if type(norm_layer) == functools.partial:
|
973 |
+
use_bias = norm_layer.func == nn.InstanceNorm2d
|
974 |
+
else:
|
975 |
+
use_bias = norm_layer == nn.InstanceNorm2d
|
976 |
+
|
977 |
+
kw = 4
|
978 |
+
padw = 1
|
979 |
+
sequence = [
|
980 |
+
nn.Conv2d(input_nc, ndf, kernel_size=kw, stride=2, padding=padw),
|
981 |
+
nn.LeakyReLU(0.2, True)
|
982 |
+
]
|
983 |
+
|
984 |
+
nf_mult = 1
|
985 |
+
nf_mult_prev = 1
|
986 |
+
for n in range(1, n_layers):
|
987 |
+
nf_mult_prev = nf_mult
|
988 |
+
nf_mult = min(2**n, 8)
|
989 |
+
sequence += [
|
990 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
|
991 |
+
kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
992 |
+
norm_layer(ndf * nf_mult),
|
993 |
+
nn.LeakyReLU(0.2, True)
|
994 |
+
]
|
995 |
+
|
996 |
+
nf_mult_prev = nf_mult
|
997 |
+
nf_mult = min(2**n_layers, 8)
|
998 |
+
sequence += [
|
999 |
+
nn.Conv2d(ndf * nf_mult_prev, ndf * nf_mult,
|
1000 |
+
kernel_size=kw, stride=2, padding=padw, bias=use_bias),
|
1001 |
+
norm_layer(ndf * nf_mult),
|
1002 |
+
nn.LeakyReLU(0.2, True)
|
1003 |
+
]
|
1004 |
+
|
1005 |
+
sequence += [nn.Conv2d(ndf * nf_mult, 1, kernel_size=kw, stride=2, padding=padw)] + [nn.Dropout(0.5)]
|
1006 |
+
if use_sigmoid:
|
1007 |
+
sequence += [nn.Sigmoid()]
|
1008 |
+
|
1009 |
+
self.model = nn.Sequential(*sequence)
|
1010 |
+
|
1011 |
+
def forward(self, input):
|
1012 |
+
return self.model(input)
|
1013 |
+
|
1014 |
+
|
1015 |
+
class GANLoss(nn.Module):
|
1016 |
+
"""Define different GAN objectives.
|
1017 |
+
|
1018 |
+
The GANLoss class abstracts away the need to create the target label tensor
|
1019 |
+
that has the same size as the input.
|
1020 |
+
"""
|
1021 |
+
|
1022 |
+
def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0):
|
1023 |
+
""" Initialize the GANLoss class.
|
1024 |
+
|
1025 |
+
Parameters:
|
1026 |
+
gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp.
|
1027 |
+
target_real_label (bool) - - label for a real image
|
1028 |
+
target_fake_label (bool) - - label of a fake image
|
1029 |
+
|
1030 |
+
Note: Do not use sigmoid as the last layer of Discriminator.
|
1031 |
+
LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss.
|
1032 |
+
"""
|
1033 |
+
super(GANLoss, self).__init__()
|
1034 |
+
self.register_buffer('real_label', th.tensor(target_real_label))
|
1035 |
+
self.register_buffer('fake_label', th.tensor(target_fake_label))
|
1036 |
+
self.gan_mode = gan_mode
|
1037 |
+
if gan_mode == 'lsgan':
|
1038 |
+
self.loss = nn.MSELoss()
|
1039 |
+
elif gan_mode == 'vanilla':
|
1040 |
+
self.loss = nn.BCEWithLogitsLoss()
|
1041 |
+
elif gan_mode in ['wgangp']:
|
1042 |
+
self.loss = None
|
1043 |
+
else:
|
1044 |
+
raise NotImplementedError('gan mode %s not implemented' % gan_mode)
|
1045 |
+
|
1046 |
+
def get_target_tensor(self, prediction, target_is_real):
|
1047 |
+
"""Create label tensors with the same size as the input.
|
1048 |
+
|
1049 |
+
Parameters:
|
1050 |
+
prediction (tensor) - - tpyically the prediction from a discriminator
|
1051 |
+
target_is_real (bool) - - if the ground truth label is for real images or fake images
|
1052 |
+
|
1053 |
+
Returns:
|
1054 |
+
A label tensor filled with ground truth label, and with the size of the input
|
1055 |
+
"""
|
1056 |
+
|
1057 |
+
if target_is_real:
|
1058 |
+
target_tensor = self.real_label
|
1059 |
+
else:
|
1060 |
+
target_tensor = self.fake_label
|
1061 |
+
return target_tensor.expand_as(prediction)
|
1062 |
+
|
1063 |
+
def __call__(self, prediction, target_is_real):
|
1064 |
+
"""Calculate loss given Discriminator's output and grount truth labels.
|
1065 |
+
|
1066 |
+
Parameters:
|
1067 |
+
prediction (tensor) - - tpyically the prediction output from a discriminator
|
1068 |
+
target_is_real (bool) - - if the ground truth label is for real images or fake images
|
1069 |
+
|
1070 |
+
Returns:
|
1071 |
+
the calculated loss.
|
1072 |
+
"""
|
1073 |
+
if self.gan_mode in ['lsgan', 'vanilla']:
|
1074 |
+
target_tensor = self.get_target_tensor(prediction, target_is_real)
|
1075 |
+
loss = self.loss(prediction, target_tensor)
|
1076 |
+
elif self.gan_mode == 'wgangp':
|
1077 |
+
if target_is_real:
|
1078 |
+
loss = -prediction.mean()
|
1079 |
+
else:
|
1080 |
+
loss = prediction.mean()
|
1081 |
+
return loss
|
1082 |
+
|
1083 |
+
|
1084 |
+
def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0):
|
1085 |
+
"""Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028
|
1086 |
+
|
1087 |
+
Arguments:
|
1088 |
+
netD (network) -- discriminator network
|
1089 |
+
real_data (tensor array) -- real images
|
1090 |
+
fake_data (tensor array) -- generated images from the generator
|
1091 |
+
device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu')
|
1092 |
+
type (str) -- if we mix real and fake data or not [real | fake | mixed].
|
1093 |
+
constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2
|
1094 |
+
lambda_gp (float) -- weight for this loss
|
1095 |
+
|
1096 |
+
Returns the gradient penalty loss
|
1097 |
+
"""
|
1098 |
+
if lambda_gp > 0.0:
|
1099 |
+
if type == 'real': # either use real images, fake images, or a linear interpolation of two.
|
1100 |
+
interpolatesv = real_data
|
1101 |
+
elif type == 'fake':
|
1102 |
+
interpolatesv = fake_data
|
1103 |
+
elif type == 'mixed':
|
1104 |
+
alpha = th.rand(real_data.shape[0], 1, device=device)
|
1105 |
+
alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape)
|
1106 |
+
interpolatesv = alpha * real_data + ((1 - alpha) * fake_data)
|
1107 |
+
else:
|
1108 |
+
raise NotImplementedError('{} not implemented'.format(type))
|
1109 |
+
interpolatesv.requires_grad_(True)
|
1110 |
+
disc_interpolates = netD(interpolatesv)
|
1111 |
+
gradients = th.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv,
|
1112 |
+
grad_outputs=th.ones(disc_interpolates.size()).to(device),
|
1113 |
+
create_graph=True, retain_graph=True, only_inputs=True)
|
1114 |
+
gradients = gradients[0].view(real_data.size(0), -1) # flat the data
|
1115 |
+
gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps
|
1116 |
+
return gradient_penalty, gradients
|
1117 |
+
else:
|
1118 |
+
return 0.0, None
|
cdim/dps_model/fp16_util.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Helpers to train with 16-bit precision.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch as th
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
|
9 |
+
|
10 |
+
INITIAL_LOG_LOSS_SCALE = 20.0
|
11 |
+
|
12 |
+
|
13 |
+
def convert_module_to_f16(l):
|
14 |
+
"""
|
15 |
+
Convert primitive modules to float16.
|
16 |
+
"""
|
17 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
18 |
+
l.weight.data = l.weight.data.half()
|
19 |
+
if l.bias is not None:
|
20 |
+
l.bias.data = l.bias.data.half()
|
21 |
+
|
22 |
+
|
23 |
+
def convert_module_to_f32(l):
|
24 |
+
"""
|
25 |
+
Convert primitive modules to float32, undoing convert_module_to_f16().
|
26 |
+
"""
|
27 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
28 |
+
l.weight.data = l.weight.data.float()
|
29 |
+
if l.bias is not None:
|
30 |
+
l.bias.data = l.bias.data.float()
|
31 |
+
|
32 |
+
|
33 |
+
def make_master_params(param_groups_and_shapes):
|
34 |
+
"""
|
35 |
+
Copy model parameters into a (differently-shaped) list of full-precision
|
36 |
+
parameters.
|
37 |
+
"""
|
38 |
+
master_params = []
|
39 |
+
for param_group, shape in param_groups_and_shapes:
|
40 |
+
master_param = nn.Parameter(
|
41 |
+
_flatten_dense_tensors(
|
42 |
+
[param.detach().float() for (_, param) in param_group]
|
43 |
+
).view(shape)
|
44 |
+
)
|
45 |
+
master_param.requires_grad = True
|
46 |
+
master_params.append(master_param)
|
47 |
+
return master_params
|
48 |
+
|
49 |
+
|
50 |
+
def model_grads_to_master_grads(param_groups_and_shapes, master_params):
|
51 |
+
"""
|
52 |
+
Copy the gradients from the model parameters into the master parameters
|
53 |
+
from make_master_params().
|
54 |
+
"""
|
55 |
+
for master_param, (param_group, shape) in zip(
|
56 |
+
master_params, param_groups_and_shapes
|
57 |
+
):
|
58 |
+
master_param.grad = _flatten_dense_tensors(
|
59 |
+
[param_grad_or_zeros(param) for (_, param) in param_group]
|
60 |
+
).view(shape)
|
61 |
+
|
62 |
+
|
63 |
+
def master_params_to_model_params(param_groups_and_shapes, master_params):
|
64 |
+
"""
|
65 |
+
Copy the master parameter data back into the model parameters.
|
66 |
+
"""
|
67 |
+
# Without copying to a list, if a generator is passed, this will
|
68 |
+
# silently not copy any parameters.
|
69 |
+
for master_param, (param_group, _) in zip(master_params, param_groups_and_shapes):
|
70 |
+
for (_, param), unflat_master_param in zip(
|
71 |
+
param_group, unflatten_master_params(param_group, master_param.view(-1))
|
72 |
+
):
|
73 |
+
param.detach().copy_(unflat_master_param)
|
74 |
+
|
75 |
+
|
76 |
+
def unflatten_master_params(param_group, master_param):
|
77 |
+
return _unflatten_dense_tensors(master_param, [param for (_, param) in param_group])
|
78 |
+
|
79 |
+
|
80 |
+
def get_param_groups_and_shapes(named_model_params):
|
81 |
+
named_model_params = list(named_model_params)
|
82 |
+
scalar_vector_named_params = (
|
83 |
+
[(n, p) for (n, p) in named_model_params if p.ndim <= 1],
|
84 |
+
(-1),
|
85 |
+
)
|
86 |
+
matrix_named_params = (
|
87 |
+
[(n, p) for (n, p) in named_model_params if p.ndim > 1],
|
88 |
+
(1, -1),
|
89 |
+
)
|
90 |
+
return [scalar_vector_named_params, matrix_named_params]
|
91 |
+
|
92 |
+
|
93 |
+
def master_params_to_state_dict(
|
94 |
+
model, param_groups_and_shapes, master_params, use_fp16
|
95 |
+
):
|
96 |
+
if use_fp16:
|
97 |
+
state_dict = model.state_dict()
|
98 |
+
for master_param, (param_group, _) in zip(
|
99 |
+
master_params, param_groups_and_shapes
|
100 |
+
):
|
101 |
+
for (name, _), unflat_master_param in zip(
|
102 |
+
param_group, unflatten_master_params(param_group, master_param.view(-1))
|
103 |
+
):
|
104 |
+
assert name in state_dict
|
105 |
+
state_dict[name] = unflat_master_param
|
106 |
+
else:
|
107 |
+
state_dict = model.state_dict()
|
108 |
+
for i, (name, _value) in enumerate(model.named_parameters()):
|
109 |
+
assert name in state_dict
|
110 |
+
state_dict[name] = master_params[i]
|
111 |
+
return state_dict
|
112 |
+
|
113 |
+
|
114 |
+
def state_dict_to_master_params(model, state_dict, use_fp16):
|
115 |
+
if use_fp16:
|
116 |
+
named_model_params = [
|
117 |
+
(name, state_dict[name]) for name, _ in model.named_parameters()
|
118 |
+
]
|
119 |
+
param_groups_and_shapes = get_param_groups_and_shapes(named_model_params)
|
120 |
+
master_params = make_master_params(param_groups_and_shapes)
|
121 |
+
else:
|
122 |
+
master_params = [state_dict[name] for name, _ in model.named_parameters()]
|
123 |
+
return master_params
|
124 |
+
|
125 |
+
|
126 |
+
def zero_master_grads(master_params):
|
127 |
+
for param in master_params:
|
128 |
+
param.grad = None
|
129 |
+
|
130 |
+
|
131 |
+
def zero_grad(model_params):
|
132 |
+
for param in model_params:
|
133 |
+
# Taken from https://pytorch.org/docs/stable/_modules/torch/optim/optimizer.html#Optimizer.add_param_group
|
134 |
+
if param.grad is not None:
|
135 |
+
param.grad.detach_()
|
136 |
+
param.grad.zero_()
|
137 |
+
|
138 |
+
|
139 |
+
def param_grad_or_zeros(param):
|
140 |
+
if param.grad is not None:
|
141 |
+
return param.grad.data.detach()
|
142 |
+
else:
|
143 |
+
return th.zeros_like(param)
|
144 |
+
|
145 |
+
|
146 |
+
class MixedPrecisionTrainer:
|
147 |
+
def __init__(
|
148 |
+
self,
|
149 |
+
*,
|
150 |
+
model,
|
151 |
+
use_fp16=False,
|
152 |
+
fp16_scale_growth=1e-3,
|
153 |
+
initial_lg_loss_scale=INITIAL_LOG_LOSS_SCALE,
|
154 |
+
):
|
155 |
+
self.model = model
|
156 |
+
self.use_fp16 = use_fp16
|
157 |
+
self.fp16_scale_growth = fp16_scale_growth
|
158 |
+
|
159 |
+
self.model_params = list(self.model.parameters())
|
160 |
+
self.master_params = self.model_params
|
161 |
+
self.param_groups_and_shapes = None
|
162 |
+
self.lg_loss_scale = initial_lg_loss_scale
|
163 |
+
|
164 |
+
if self.use_fp16:
|
165 |
+
self.param_groups_and_shapes = get_param_groups_and_shapes(
|
166 |
+
self.model.named_parameters()
|
167 |
+
)
|
168 |
+
self.master_params = make_master_params(self.param_groups_and_shapes)
|
169 |
+
self.model.convert_to_fp16()
|
170 |
+
|
171 |
+
def zero_grad(self):
|
172 |
+
zero_grad(self.model_params)
|
173 |
+
|
174 |
+
def backward(self, loss: th.Tensor):
|
175 |
+
if self.use_fp16:
|
176 |
+
loss_scale = 2 ** self.lg_loss_scale
|
177 |
+
(loss * loss_scale).backward()
|
178 |
+
else:
|
179 |
+
loss.backward()
|
180 |
+
|
181 |
+
def optimize(self, opt: th.optim.Optimizer):
|
182 |
+
if self.use_fp16:
|
183 |
+
return self._optimize_fp16(opt)
|
184 |
+
else:
|
185 |
+
return self._optimize_normal(opt)
|
186 |
+
|
187 |
+
def _optimize_fp16(self, opt: th.optim.Optimizer):
|
188 |
+
logger.logkv_mean("lg_loss_scale", self.lg_loss_scale)
|
189 |
+
model_grads_to_master_grads(self.param_groups_and_shapes, self.master_params)
|
190 |
+
grad_norm, param_norm = self._compute_norms(grad_scale=2 ** self.lg_loss_scale)
|
191 |
+
if check_overflow(grad_norm):
|
192 |
+
self.lg_loss_scale -= 1
|
193 |
+
logger.log(f"Found NaN, decreased lg_loss_scale to {self.lg_loss_scale}")
|
194 |
+
zero_master_grads(self.master_params)
|
195 |
+
return False
|
196 |
+
|
197 |
+
logger.logkv_mean("grad_norm", grad_norm)
|
198 |
+
logger.logkv_mean("param_norm", param_norm)
|
199 |
+
|
200 |
+
self.master_params[0].grad.mul_(1.0 / (2 ** self.lg_loss_scale))
|
201 |
+
opt.step()
|
202 |
+
zero_master_grads(self.master_params)
|
203 |
+
master_params_to_model_params(self.param_groups_and_shapes, self.master_params)
|
204 |
+
self.lg_loss_scale += self.fp16_scale_growth
|
205 |
+
return True
|
206 |
+
|
207 |
+
def _optimize_normal(self, opt: th.optim.Optimizer):
|
208 |
+
grad_norm, param_norm = self._compute_norms()
|
209 |
+
logger.logkv_mean("grad_norm", grad_norm)
|
210 |
+
logger.logkv_mean("param_norm", param_norm)
|
211 |
+
opt.step()
|
212 |
+
return True
|
213 |
+
|
214 |
+
def _compute_norms(self, grad_scale=1.0):
|
215 |
+
grad_norm = 0.0
|
216 |
+
param_norm = 0.0
|
217 |
+
for p in self.master_params:
|
218 |
+
with th.no_grad():
|
219 |
+
param_norm += th.norm(p, p=2, dtype=th.float32).item() ** 2
|
220 |
+
if p.grad is not None:
|
221 |
+
grad_norm += th.norm(p.grad, p=2, dtype=th.float32).item() ** 2
|
222 |
+
return np.sqrt(grad_norm) / grad_scale, np.sqrt(param_norm)
|
223 |
+
|
224 |
+
def master_params_to_state_dict(self, master_params):
|
225 |
+
return master_params_to_state_dict(
|
226 |
+
self.model, self.param_groups_and_shapes, master_params, self.use_fp16
|
227 |
+
)
|
228 |
+
|
229 |
+
def state_dict_to_master_params(self, state_dict):
|
230 |
+
return state_dict_to_master_params(self.model, state_dict, self.use_fp16)
|
231 |
+
|
232 |
+
|
233 |
+
def check_overflow(value):
|
234 |
+
return (value == float("inf")) or (value == -float("inf")) or (value != value)
|
cdim/dps_model/nn.py
ADDED
@@ -0,0 +1,170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various utilities for neural networks.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import math
|
6 |
+
|
7 |
+
import torch as th
|
8 |
+
import torch.nn as nn
|
9 |
+
|
10 |
+
|
11 |
+
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
12 |
+
class SiLU(nn.Module):
|
13 |
+
def forward(self, x):
|
14 |
+
return x * th.sigmoid(x)
|
15 |
+
|
16 |
+
|
17 |
+
class GroupNorm32(nn.GroupNorm):
|
18 |
+
def forward(self, x):
|
19 |
+
return super().forward(x.float()).type(x.dtype)
|
20 |
+
|
21 |
+
|
22 |
+
def conv_nd(dims, *args, **kwargs):
|
23 |
+
"""
|
24 |
+
Create a 1D, 2D, or 3D convolution module.
|
25 |
+
"""
|
26 |
+
if dims == 1:
|
27 |
+
return nn.Conv1d(*args, **kwargs)
|
28 |
+
elif dims == 2:
|
29 |
+
return nn.Conv2d(*args, **kwargs)
|
30 |
+
elif dims == 3:
|
31 |
+
return nn.Conv3d(*args, **kwargs)
|
32 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
33 |
+
|
34 |
+
|
35 |
+
def linear(*args, **kwargs):
|
36 |
+
"""
|
37 |
+
Create a linear module.
|
38 |
+
"""
|
39 |
+
return nn.Linear(*args, **kwargs)
|
40 |
+
|
41 |
+
|
42 |
+
def avg_pool_nd(dims, *args, **kwargs):
|
43 |
+
"""
|
44 |
+
Create a 1D, 2D, or 3D average pooling module.
|
45 |
+
"""
|
46 |
+
if dims == 1:
|
47 |
+
return nn.AvgPool1d(*args, **kwargs)
|
48 |
+
elif dims == 2:
|
49 |
+
return nn.AvgPool2d(*args, **kwargs)
|
50 |
+
elif dims == 3:
|
51 |
+
return nn.AvgPool3d(*args, **kwargs)
|
52 |
+
raise ValueError(f"unsupported dimensions: {dims}")
|
53 |
+
|
54 |
+
|
55 |
+
def update_ema(target_params, source_params, rate=0.99):
|
56 |
+
"""
|
57 |
+
Update target parameters to be closer to those of source parameters using
|
58 |
+
an exponential moving average.
|
59 |
+
|
60 |
+
:param target_params: the target parameter sequence.
|
61 |
+
:param source_params: the source parameter sequence.
|
62 |
+
:param rate: the EMA rate (closer to 1 means slower).
|
63 |
+
"""
|
64 |
+
for targ, src in zip(target_params, source_params):
|
65 |
+
targ.detach().mul_(rate).add_(src, alpha=1 - rate)
|
66 |
+
|
67 |
+
|
68 |
+
def zero_module(module):
|
69 |
+
"""
|
70 |
+
Zero out the parameters of a module and return it.
|
71 |
+
"""
|
72 |
+
for p in module.parameters():
|
73 |
+
p.detach().zero_()
|
74 |
+
return module
|
75 |
+
|
76 |
+
|
77 |
+
def scale_module(module, scale):
|
78 |
+
"""
|
79 |
+
Scale the parameters of a module and return it.
|
80 |
+
"""
|
81 |
+
for p in module.parameters():
|
82 |
+
p.detach().mul_(scale)
|
83 |
+
return module
|
84 |
+
|
85 |
+
|
86 |
+
def mean_flat(tensor):
|
87 |
+
"""
|
88 |
+
Take the mean over all non-batch dimensions.
|
89 |
+
"""
|
90 |
+
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
91 |
+
|
92 |
+
|
93 |
+
def normalization(channels):
|
94 |
+
"""
|
95 |
+
Make a standard normalization layer.
|
96 |
+
|
97 |
+
:param channels: number of input channels.
|
98 |
+
:return: an nn.Module for normalization.
|
99 |
+
"""
|
100 |
+
return GroupNorm32(32, channels)
|
101 |
+
|
102 |
+
|
103 |
+
def timestep_embedding(timesteps, dim, max_period=10000):
|
104 |
+
"""
|
105 |
+
Create sinusoidal timestep embeddings.
|
106 |
+
|
107 |
+
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
108 |
+
These may be fractional.
|
109 |
+
:param dim: the dimension of the output.
|
110 |
+
:param max_period: controls the minimum frequency of the embeddings.
|
111 |
+
:return: an [N x dim] Tensor of positional embeddings.
|
112 |
+
"""
|
113 |
+
half = dim // 2
|
114 |
+
freqs = th.exp(
|
115 |
+
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half
|
116 |
+
).to(device=timesteps.device)
|
117 |
+
args = timesteps[:, None].float() * freqs[None]
|
118 |
+
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1)
|
119 |
+
if dim % 2:
|
120 |
+
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1)
|
121 |
+
return embedding
|
122 |
+
|
123 |
+
|
124 |
+
def checkpoint(func, inputs, params, flag):
|
125 |
+
"""
|
126 |
+
Evaluate a function without caching intermediate activations, allowing for
|
127 |
+
reduced memory at the expense of extra compute in the backward pass.
|
128 |
+
|
129 |
+
:param func: the function to evaluate.
|
130 |
+
:param inputs: the argument sequence to pass to `func`.
|
131 |
+
:param params: a sequence of parameters `func` depends on but does not
|
132 |
+
explicitly take as arguments.
|
133 |
+
:param flag: if False, disable gradient checkpointing.
|
134 |
+
"""
|
135 |
+
if flag:
|
136 |
+
args = tuple(inputs) + tuple(params)
|
137 |
+
return CheckpointFunction.apply(func, len(inputs), *args)
|
138 |
+
else:
|
139 |
+
return func(*inputs)
|
140 |
+
|
141 |
+
|
142 |
+
class CheckpointFunction(th.autograd.Function):
|
143 |
+
@staticmethod
|
144 |
+
def forward(ctx, run_function, length, *args):
|
145 |
+
ctx.run_function = run_function
|
146 |
+
ctx.input_tensors = list(args[:length])
|
147 |
+
ctx.input_params = list(args[length:])
|
148 |
+
with th.no_grad():
|
149 |
+
output_tensors = ctx.run_function(*ctx.input_tensors)
|
150 |
+
return output_tensors
|
151 |
+
|
152 |
+
@staticmethod
|
153 |
+
def backward(ctx, *output_grads):
|
154 |
+
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
155 |
+
with th.enable_grad():
|
156 |
+
# Fixes a bug where the first op in run_function modifies the
|
157 |
+
# Tensor storage in place, which is not allowed for detach()'d
|
158 |
+
# Tensors.
|
159 |
+
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
160 |
+
output_tensors = ctx.run_function(*shallow_copies)
|
161 |
+
input_grads = th.autograd.grad(
|
162 |
+
output_tensors,
|
163 |
+
ctx.input_tensors + ctx.input_params,
|
164 |
+
output_grads,
|
165 |
+
allow_unused=True,
|
166 |
+
)
|
167 |
+
del ctx.input_tensors
|
168 |
+
del ctx.input_params
|
169 |
+
del output_tensors
|
170 |
+
return (None, None) + input_grads
|
cdim/image_utils.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
from torchvision.transforms import ToPILImage
|
2 |
|
3 |
def save_to_image(tensor, filename):
|
@@ -15,3 +18,51 @@ def save_to_image(tensor, filename):
|
|
15 |
|
16 |
# Save the image
|
17 |
img.save(filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
from torchvision.transforms import ToPILImage
|
5 |
|
6 |
def save_to_image(tensor, filename):
|
|
|
18 |
|
19 |
# Save the image
|
20 |
img.save(filename)
|
21 |
+
|
22 |
+
|
23 |
+
def randn_tensor(
|
24 |
+
shape: Union[Tuple, List],
|
25 |
+
generator: Optional[Union[List["torch.Generator"], "torch.Generator"]] = None,
|
26 |
+
device: Optional["torch.device"] = None,
|
27 |
+
dtype: Optional["torch.dtype"] = None,
|
28 |
+
layout: Optional["torch.layout"] = None,
|
29 |
+
):
|
30 |
+
"""A helper function to create random tensors on the desired `device` with the desired `dtype`. When
|
31 |
+
passing a list of generators, you can seed each batch size individually. If CPU generators are passed, the tensor
|
32 |
+
is always created on the CPU.
|
33 |
+
"""
|
34 |
+
# device on which tensor is created defaults to device
|
35 |
+
rand_device = device
|
36 |
+
batch_size = shape[0]
|
37 |
+
|
38 |
+
layout = layout or torch.strided
|
39 |
+
device = device or torch.device("cpu")
|
40 |
+
|
41 |
+
if generator is not None:
|
42 |
+
gen_device_type = generator.device.type if not isinstance(generator, list) else generator[0].device.type
|
43 |
+
if gen_device_type != device.type and gen_device_type == "cpu":
|
44 |
+
rand_device = "cpu"
|
45 |
+
if device != "mps":
|
46 |
+
logger.info(
|
47 |
+
f"The passed generator was created on 'cpu' even though a tensor on {device} was expected."
|
48 |
+
f" Tensors will be created on 'cpu' and then moved to {device}. Note that one can probably"
|
49 |
+
f" slighly speed up this function by passing a generator that was created on the {device} device."
|
50 |
+
)
|
51 |
+
elif gen_device_type != device.type and gen_device_type == "cuda":
|
52 |
+
raise ValueError(f"Cannot generate a {device} tensor from a generator of type {gen_device_type}.")
|
53 |
+
|
54 |
+
# make sure generator list of length 1 is treated like a non-list
|
55 |
+
if isinstance(generator, list) and len(generator) == 1:
|
56 |
+
generator = generator[0]
|
57 |
+
|
58 |
+
if isinstance(generator, list):
|
59 |
+
shape = (1,) + shape[1:]
|
60 |
+
latents = [
|
61 |
+
torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype, layout=layout)
|
62 |
+
for i in range(batch_size)
|
63 |
+
]
|
64 |
+
latents = torch.cat(latents, dim=0).to(device)
|
65 |
+
else:
|
66 |
+
latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype, layout=layout).to(device)
|
67 |
+
|
68 |
+
return latents
|
cdim/noise.py
CHANGED
@@ -33,18 +33,20 @@ class Noise(ABC):
|
|
33 |
@register_noise(name='gaussian')
|
34 |
class GaussianNoise(Noise):
|
35 |
def __init__(self, sigma):
|
36 |
-
self.sigma = sigma
|
37 |
-
|
38 |
-
def __call__(self, data):
|
39 |
# Important! We scale sigma by 2 because the config assumes images are in [0, 1]
|
40 |
# but actually this model uses images in [-1, 1]
|
41 |
-
|
|
|
|
|
|
|
|
|
42 |
|
43 |
|
44 |
@register_noise(name='poisson')
|
45 |
class PoissonNoise(Noise):
|
46 |
def __init__(self, rate):
|
47 |
self.rate = rate
|
|
|
48 |
|
49 |
def __call__(self, data):
|
50 |
import numpy as np
|
|
|
33 |
@register_noise(name='gaussian')
|
34 |
class GaussianNoise(Noise):
|
35 |
def __init__(self, sigma):
|
|
|
|
|
|
|
36 |
# Important! We scale sigma by 2 because the config assumes images are in [0, 1]
|
37 |
# but actually this model uses images in [-1, 1]
|
38 |
+
self.sigma = 2 * sigma
|
39 |
+
self.name = 'gaussian'
|
40 |
+
|
41 |
+
def __call__(self, data):
|
42 |
+
return data + torch.randn_like(data, device=data.device) * self.sigma
|
43 |
|
44 |
|
45 |
@register_noise(name='poisson')
|
46 |
class PoissonNoise(Noise):
|
47 |
def __init__(self, rate):
|
48 |
self.rate = rate
|
49 |
+
self.name = 'poisson'
|
50 |
|
51 |
def __call__(self, data):
|
52 |
import numpy as np
|
cdim/operators/__init__.py
CHANGED
@@ -21,4 +21,5 @@ def get_operator(name: str, **kwargs):
|
|
21 |
|
22 |
# Import everything to make sure they register
|
23 |
from .random_box_masker import RandomBoxMasker
|
|
|
24 |
from .identity_operator import IdentityOperator
|
|
|
21 |
|
22 |
# Import everything to make sure they register
|
23 |
from .random_box_masker import RandomBoxMasker
|
24 |
+
from .random_pixel_masker import RandomPixelMasker
|
25 |
from .identity_operator import IdentityOperator
|
cdim/operators/random_pixel_masker.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
from cdim.operators import register_operator
|
4 |
+
|
5 |
+
@register_operator(name='random_inpainting')
|
6 |
+
class RandomPixelMasker:
|
7 |
+
def __init__(self, height=256, width=256, channels=3, fraction=0.08, device='cpu'):
|
8 |
+
"""
|
9 |
+
Initialize the ConsistentRandomPixelSelector.
|
10 |
+
|
11 |
+
Args:
|
12 |
+
height (int): Height of the input tensors (default: 256)
|
13 |
+
width (int): Width of the input tensors (default: 256)
|
14 |
+
channels (int): Number of channels in the input tensors (default: 3)
|
15 |
+
fraction (float): Fraction of pixels to keep (default: 0.08 for 8%)
|
16 |
+
device (str): Device to create the mask on (default: 'cpu')
|
17 |
+
"""
|
18 |
+
self.height = height
|
19 |
+
self.width = width
|
20 |
+
self.channels = channels
|
21 |
+
self.fraction = fraction
|
22 |
+
self.device = device
|
23 |
+
|
24 |
+
# Create a binary mask for pixel selection
|
25 |
+
num_pixels = height * width
|
26 |
+
num_selected = int(num_pixels * fraction)
|
27 |
+
self.mask = torch.zeros((1, channels, height, width), device=device)
|
28 |
+
|
29 |
+
# Randomly select pixel indices
|
30 |
+
selected_indices = torch.randperm(num_pixels)[:num_selected]
|
31 |
+
|
32 |
+
# Convert indices to 2D coordinates
|
33 |
+
selected_y = selected_indices // width
|
34 |
+
selected_x = selected_indices % width
|
35 |
+
|
36 |
+
# Set selected pixels in the mask to 1
|
37 |
+
self.mask[0, :, selected_y, selected_x] = 1
|
38 |
+
|
39 |
+
def __call__(self, tensor):
|
40 |
+
"""
|
41 |
+
Apply the consistent random pixel selection to the input tensor.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
tensor (torch.Tensor): Input tensor of shape (b, channels, height, width)
|
45 |
+
|
46 |
+
Returns:
|
47 |
+
torch.Tensor: Tensor with the same shape as input, but with only selected pixels
|
48 |
+
"""
|
49 |
+
b, c, h, w = tensor.shape
|
50 |
+
assert c == self.channels and h == self.height and w == self.width, \
|
51 |
+
f"Input tensor must be of shape (b, {self.channels}, {self.height}, {self.width})"
|
52 |
+
|
53 |
+
# Move the mask to the same device as the input tensor if necessary
|
54 |
+
if tensor.device != self.mask.device:
|
55 |
+
self.mask = self.mask.to(tensor.device)
|
56 |
+
|
57 |
+
# Apply the mask to the input tensor
|
58 |
+
return tensor * self.mask
|
inference.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import yaml
|
|
|
4 |
|
5 |
from PIL import Image
|
6 |
import numpy as np
|
@@ -9,7 +10,11 @@ import torch
|
|
9 |
from cdim.noise import get_noise
|
10 |
from cdim.operators import get_operator
|
11 |
from cdim.image_utils import save_to_image
|
|
|
|
|
|
|
12 |
|
|
|
13 |
|
14 |
def load_image(path):
|
15 |
"""
|
@@ -40,17 +45,43 @@ def main(args):
|
|
40 |
# Load the noise function
|
41 |
noise_config = load_yaml(args.noise_config)
|
42 |
noise_function = get_noise(**noise_config)
|
43 |
-
print(noise_function)
|
44 |
|
45 |
# Load the measurement function A
|
46 |
operator_config = load_yaml(args.operator_config)
|
47 |
operator_config["device"] = device
|
48 |
operator = get_operator(**operator_config)
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
noisy_measurement = noise_function(operator(original_image))
|
52 |
save_to_image(noisy_measurement, os.path.join(args.output_dir, "noisy_measurement.png"))
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if __name__ == '__main__':
|
55 |
parser = argparse.ArgumentParser()
|
56 |
parser.add_argument("input_image", type=str)
|
@@ -59,6 +90,7 @@ if __name__ == '__main__':
|
|
59 |
parser.add_argument("model", type=str)
|
60 |
parser.add_argument("operator_config", type=str)
|
61 |
parser.add_argument("noise_config", type=str)
|
|
|
62 |
parser.add_argument("--output-dir", default=".", type=str)
|
63 |
parser.add_argument("--cuda", default=True, action=argparse.BooleanOptionalAction)
|
64 |
|
|
|
1 |
import argparse
|
2 |
import os
|
3 |
import yaml
|
4 |
+
import time
|
5 |
|
6 |
from PIL import Image
|
7 |
import numpy as np
|
|
|
10 |
from cdim.noise import get_noise
|
11 |
from cdim.operators import get_operator
|
12 |
from cdim.image_utils import save_to_image
|
13 |
+
from cdim.dps_model.dps_unet import create_model
|
14 |
+
from cdim.diffusion.scheduling_ddim import DDIMScheduler
|
15 |
+
from cdim.diffusion.diffusion_pipeline import run_diffusion
|
16 |
|
17 |
+
torch.manual_seed(8)
|
18 |
|
19 |
def load_image(path):
|
20 |
"""
|
|
|
45 |
# Load the noise function
|
46 |
noise_config = load_yaml(args.noise_config)
|
47 |
noise_function = get_noise(**noise_config)
|
|
|
48 |
|
49 |
# Load the measurement function A
|
50 |
operator_config = load_yaml(args.operator_config)
|
51 |
operator_config["device"] = device
|
52 |
operator = get_operator(**operator_config)
|
53 |
+
|
54 |
+
# Load the model
|
55 |
+
model_config = load_yaml(args.model_config)
|
56 |
+
model = create_model(**model_config)
|
57 |
+
model = model.to(device)
|
58 |
+
model.eval()
|
59 |
+
|
60 |
+
# All the models have the same scheduler.
|
61 |
+
# you can change this for different models
|
62 |
+
ddim_scheduler = DDIMScheduler(
|
63 |
+
num_train_timesteps=1000,
|
64 |
+
beta_start=0.0001,
|
65 |
+
beta_end=0.02,
|
66 |
+
beta_schedule="linear",
|
67 |
+
prediction_type="epsilon",
|
68 |
+
timestep_spacing="leading",
|
69 |
+
steps_offset=0,
|
70 |
+
)
|
71 |
|
72 |
noisy_measurement = noise_function(operator(original_image))
|
73 |
save_to_image(noisy_measurement, os.path.join(args.output_dir, "noisy_measurement.png"))
|
74 |
|
75 |
+
t0 = time.time()
|
76 |
+
output_image = run_diffusion(
|
77 |
+
model, ddim_scheduler,
|
78 |
+
noisy_measurement, operator, noise_function, device,
|
79 |
+
num_inference_steps=args.T,
|
80 |
+
K=args.K)
|
81 |
+
print(f"total time {time.time() - t0}")
|
82 |
+
|
83 |
+
save_to_image(output_image, os.path.join(args.output_dir, "output.png"))
|
84 |
+
|
85 |
if __name__ == '__main__':
|
86 |
parser = argparse.ArgumentParser()
|
87 |
parser.add_argument("input_image", type=str)
|
|
|
90 |
parser.add_argument("model", type=str)
|
91 |
parser.add_argument("operator_config", type=str)
|
92 |
parser.add_argument("noise_config", type=str)
|
93 |
+
parser.add_argument("model_config", type=str)
|
94 |
parser.add_argument("--output-dir", default=".", type=str)
|
95 |
parser.add_argument("--cuda", default=True, action=argparse.BooleanOptionalAction)
|
96 |
|
models/ffhq_model_config.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Defaults for image training.
|
2 |
+
|
3 |
+
image_size: 256
|
4 |
+
num_channels: 128
|
5 |
+
num_res_blocks: 1
|
6 |
+
channel_mult: ""
|
7 |
+
learn_sigma: True
|
8 |
+
class_cond: False
|
9 |
+
use_checkpoint: False
|
10 |
+
attention_resolutions: 16
|
11 |
+
num_heads: 4
|
12 |
+
num_head_channels: 64
|
13 |
+
num_heads_upsample: -1
|
14 |
+
use_scale_shift_norm: True
|
15 |
+
dropout: 0.0
|
16 |
+
resblock_updown: True
|
17 |
+
use_fp16: False
|
18 |
+
use_new_attention_order: False
|
19 |
+
|
20 |
+
model_path: models/ffhq_10m.pt
|
operator_configs/random_inpainting_config.yaml
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: random_inpainting
|
2 |
+
fraction: 0.08 # Fraction of pixels to keep
|
3 |
+
height: 256
|
4 |
+
width: 256
|
5 |
+
channels: 3
|