import argparse import os import yaml import time from PIL import Image import numpy as np import torch from diffusers import DiffusionPipeline from cdim.noise import get_noise from cdim.operators import get_operator from cdim.image_utils import save_to_image from cdim.dps_model.dps_unet import create_model from cdim.diffusion.scheduling_ddim import DDIMScheduler from cdim.diffusion.diffusion_pipeline import run_diffusion from cdim.eta_scheduler import EtaScheduler # torch.manual_seed(7) def load_image(path): """ Load the image and normalize to [-1, 1] """ original_image = Image.open(path) # Resize if needed original_image = np.array(original_image.resize((256, 256), Image.BICUBIC)) original_image = torch.from_numpy(original_image).unsqueeze(0).permute(0, 3, 1, 2) return (original_image / 127.5 - 1.0).to(torch.float)[:, :3] def load_yaml(file_path: str) -> dict: with open(file_path) as f: config = yaml.load(f, Loader=yaml.FullLoader) return config def main(args): device_str = f"cuda" if args.cuda and torch.cuda.is_available() else 'cpu' print(f"Using device {device_str}") device = torch.device(device_str) os.makedirs(args.output_dir, exist_ok=True) original_image = load_image(args.input_image).to(device) # Load the noise function noise_config = load_yaml(args.noise_config) noise_function = get_noise(**noise_config) # Load the measurement function A operator_config = load_yaml(args.operator_config) operator_config["device"] = device operator = get_operator(**operator_config) if args.model_config.endswith(".yaml"): # Local model from DPS model_type = "dps" model_config = load_yaml(args.model_config) model = create_model(**model_config) model = model.to(device) model.eval() else: # Huggingface diffusers model model_type = "diffusers" model = DiffusionPipeline.from_pretrained(args.model_config).to("cuda").unet # All the models have the same scheduler. # you can change this for different models ddim_scheduler = DDIMScheduler( num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", prediction_type="epsilon", timestep_spacing="leading", steps_offset=0, ) noisy_measurement = noise_function(operator(original_image)) save_to_image(noisy_measurement, os.path.join(args.output_dir, "noisy_measurement.png")) eta_scheduler = EtaScheduler(args.eta_type, operator.name, args.T, args.K, args.loss, args.lambda_val) t0 = time.time() output_image = run_diffusion( model, ddim_scheduler, noisy_measurement, operator, noise_function, device, eta_scheduler, num_inference_steps=args.T, K=args.K, model_type=model_type, loss_type=args.loss) print(f"total time {time.time() - t0}") save_to_image(output_image, os.path.join(args.output_dir, "output.png")) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("input_image", type=str) parser.add_argument("T", type=int) parser.add_argument("K", type=int) parser.add_argument("operator_config", type=str) parser.add_argument("noise_config", type=str) parser.add_argument("model_config", type=str) parser.add_argument("--eta-type", type=str, choices=['gradnorm', 'expected_gradnorm'], default='expected_gradnorm') parser.add_argument("--lambda-val", type=float, default=None, help="Constant to scale learning rate. Leave empty to use a heuristic best guess.") parser.add_argument("--output-dir", default=".", type=str) parser.add_argument("--loss", type=str, choices=['l2', 'kl', 'categorical_kl'], default='l2', help="Algorithm to use. Options: 'l2', 'kl', 'categorical_kl'. Default is 'l2'." ) parser.add_argument("--cuda", default=True, action=argparse.BooleanOptionalAction) main(parser.parse_args())