Update app.py
Browse files
app.py
CHANGED
@@ -1,49 +1,49 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
|
3 |
-
import torch
|
4 |
-
import torch.nn as nn
|
5 |
-
import torch.nn.functional as F
|
6 |
-
import torchaudio
|
7 |
-
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
8 |
-
|
9 |
-
import librosa
|
10 |
-
import IPython.display as ipd
|
11 |
-
import numpy as np
|
12 |
-
import pandas as pd
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-voxpopuli-gtzan-music"
|
18 |
-
config = AutoConfig.from_pretrained(model_name_or_path)
|
19 |
-
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
20 |
-
sampling_rate = feature_extractor.sampling_rate
|
21 |
-
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
22 |
-
|
23 |
-
|
24 |
-
def speech_file_to_array_fn(path, sampling_rate):
|
25 |
-
speech_array, _sampling_rate = torchaudio.load(path)
|
26 |
-
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
27 |
-
speech = resampler(speech_array).squeeze().numpy()
|
28 |
-
return speech
|
29 |
-
|
30 |
-
|
31 |
-
def predict(path, sampling_rate):
|
32 |
-
speech = speech_file_to_array_fn(path, sampling_rate)
|
33 |
-
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
34 |
-
inputs = {key: inputs[key].to(device) for key in inputs}
|
35 |
-
|
36 |
-
with torch.no_grad():
|
37 |
-
logits = model(**inputs).logits
|
38 |
-
|
39 |
-
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
40 |
-
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
41 |
-
return outputs
|
42 |
-
|
43 |
-
|
44 |
-
path = "La Campanella.mp3"
|
45 |
-
outputs = predict(path, sampling_rate)
|
46 |
-
|
47 |
-
|
48 |
-
iface = gr.Interface(fn=predict, inputs=path, outputs=predict(path, sampling_rate))
|
49 |
-
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torchaudio
|
7 |
+
from transformers import AutoConfig, Wav2Vec2FeatureExtractor
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
import IPython.display as ipd
|
11 |
+
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
+
model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-voxpopuli-gtzan-music"
|
18 |
+
config = AutoConfig.from_pretrained(model_name_or_path)
|
19 |
+
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
20 |
+
sampling_rate = feature_extractor.sampling_rate
|
21 |
+
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
|
22 |
+
|
23 |
+
|
24 |
+
def speech_file_to_array_fn(path, sampling_rate):
|
25 |
+
speech_array, _sampling_rate = torchaudio.load(path)
|
26 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
27 |
+
speech = resampler(speech_array).squeeze().numpy()
|
28 |
+
return speech
|
29 |
+
|
30 |
+
|
31 |
+
def predict(path, sampling_rate):
|
32 |
+
speech = speech_file_to_array_fn(path, sampling_rate)
|
33 |
+
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
34 |
+
inputs = {key: inputs[key].to(device) for key in inputs}
|
35 |
+
|
36 |
+
with torch.no_grad():
|
37 |
+
logits = model(**inputs).logits
|
38 |
+
|
39 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
40 |
+
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
41 |
+
return outputs
|
42 |
+
|
43 |
+
|
44 |
+
path = "La Campanella.mp3"
|
45 |
+
outputs = predict(path, sampling_rate)
|
46 |
+
|
47 |
+
|
48 |
+
iface = gr.Interface(fn=predict, inputs=path, outputs=predict(path, sampling_rate))
|
49 |
+
iface.launch()
|