Spaces:
Runtime error
Runtime error
Vincent-luo
commited on
Commit
·
eb4334e
1
Parent(s):
8527cc7
Update app.py
Browse files
app.py
CHANGED
@@ -6,12 +6,71 @@ from PIL import Image
|
|
6 |
from argparse import Namespace
|
7 |
import gradio as gr
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
from diffusers import (
|
10 |
FlaxControlNetModel,
|
11 |
FlaxStableDiffusionControlNetPipeline,
|
12 |
)
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
args = Namespace(
|
16 |
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
17 |
revision="non-ema",
|
@@ -53,7 +112,8 @@ def infer(prompt, negative_prompt, image):
|
|
53 |
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
54 |
prompt_ids = shard(prompt_ids)
|
55 |
|
56 |
-
|
|
|
57 |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
58 |
processed_image = shard(processed_image)
|
59 |
|
@@ -73,7 +133,8 @@ def infer(prompt, negative_prompt, image):
|
|
73 |
|
74 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
75 |
|
76 |
-
|
|
|
77 |
|
78 |
|
79 |
with gr.Blocks(theme='gradio/soft') as demo:
|
@@ -84,7 +145,7 @@ with gr.Blocks(theme='gradio/soft') as demo:
|
|
84 |
prompt_input = gr.Textbox(label="Prompt")
|
85 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
86 |
input_image = gr.Image(label="Input Image")
|
87 |
-
output_image = gr.
|
88 |
submit_btn = gr.Button(value = "Submit")
|
89 |
inputs = [prompt_input, negative_prompt, input_image]
|
90 |
submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
|
|
|
6 |
from argparse import Namespace
|
7 |
import gradio as gr
|
8 |
|
9 |
+
import numpy as np
|
10 |
+
import mediapipe as mp
|
11 |
+
from mediapipe import solutions
|
12 |
+
from mediapipe.framework.formats import landmark_pb2
|
13 |
+
from mediapipe.tasks import python
|
14 |
+
from mediapipe.tasks.python import vision
|
15 |
+
import cv2
|
16 |
+
|
17 |
from diffusers import (
|
18 |
FlaxControlNetModel,
|
19 |
FlaxStableDiffusionControlNetPipeline,
|
20 |
)
|
21 |
|
22 |
|
23 |
+
# mediapipe annotation
|
24 |
+
MARGIN = 10 # pixels
|
25 |
+
FONT_SIZE = 1
|
26 |
+
FONT_THICKNESS = 1
|
27 |
+
HANDEDNESS_TEXT_COLOR = (88, 205, 54) # vibrant green
|
28 |
+
|
29 |
+
def draw_landmarks_on_image(rgb_image, detection_result):
|
30 |
+
hand_landmarks_list = detection_result.hand_landmarks
|
31 |
+
handedness_list = detection_result.handedness
|
32 |
+
annotated_image = np.zeros_like(rgb_image)
|
33 |
+
|
34 |
+
# Loop through the detected hands to visualize.
|
35 |
+
for idx in range(len(hand_landmarks_list)):
|
36 |
+
hand_landmarks = hand_landmarks_list[idx]
|
37 |
+
handedness = handedness_list[idx]
|
38 |
+
|
39 |
+
# Draw the hand landmarks.
|
40 |
+
hand_landmarks_proto = landmark_pb2.NormalizedLandmarkList()
|
41 |
+
hand_landmarks_proto.landmark.extend([
|
42 |
+
landmark_pb2.NormalizedLandmark(x=landmark.x, y=landmark.y, z=landmark.z) for landmark in hand_landmarks
|
43 |
+
])
|
44 |
+
solutions.drawing_utils.draw_landmarks(
|
45 |
+
annotated_image,
|
46 |
+
hand_landmarks_proto,
|
47 |
+
solutions.hands.HAND_CONNECTIONS,
|
48 |
+
solutions.drawing_styles.get_default_hand_landmarks_style(),
|
49 |
+
solutions.drawing_styles.get_default_hand_connections_style())
|
50 |
+
|
51 |
+
return annotated_image
|
52 |
+
|
53 |
+
def generate_annotation(img):
|
54 |
+
"""img(input): numpy array
|
55 |
+
annotated_image(output): numpy array
|
56 |
+
"""
|
57 |
+
# STEP 2: Create an HandLandmarker object.
|
58 |
+
base_options = python.BaseOptions(model_asset_path='hand_landmarker.task')
|
59 |
+
options = vision.HandLandmarkerOptions(base_options=base_options,
|
60 |
+
num_hands=2)
|
61 |
+
detector = vision.HandLandmarker.create_from_options(options)
|
62 |
+
|
63 |
+
# STEP 3: Load the input image.
|
64 |
+
image = mp.Image(
|
65 |
+
image_format=mp.ImageFormat.SRGB, data=img)
|
66 |
+
|
67 |
+
# STEP 4: Detect hand landmarks from the input image.
|
68 |
+
detection_result = detector.detect(image)
|
69 |
+
|
70 |
+
# STEP 5: Process the classification result. In this case, visualize it.
|
71 |
+
annotated_image = draw_landmarks_on_image(image.numpy_view(), detection_result)
|
72 |
+
return annotated_image
|
73 |
+
|
74 |
args = Namespace(
|
75 |
pretrained_model_name_or_path="runwayml/stable-diffusion-v1-5",
|
76 |
revision="non-ema",
|
|
|
112 |
prompt_ids = pipeline.prepare_text_inputs(prompts)
|
113 |
prompt_ids = shard(prompt_ids)
|
114 |
|
115 |
+
annotated_image = generate_annotation(image)
|
116 |
+
validation_image = Image.fromarray(annotated_image).convert("RGB")
|
117 |
processed_image = pipeline.prepare_image_inputs(num_samples * [validation_image])
|
118 |
processed_image = shard(processed_image)
|
119 |
|
|
|
133 |
|
134 |
images = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
|
135 |
|
136 |
+
results = [i for i in images]
|
137 |
+
return [annotated_image] + results
|
138 |
|
139 |
|
140 |
with gr.Blocks(theme='gradio/soft') as demo:
|
|
|
145 |
prompt_input = gr.Textbox(label="Prompt")
|
146 |
negative_prompt = gr.Textbox(label="Negative Prompt")
|
147 |
input_image = gr.Image(label="Input Image")
|
148 |
+
output_image = gr.Gallery(label='Output Image', show_label=False, elem_id="gallery").style(grid=3, height='auto')
|
149 |
submit_btn = gr.Button(value = "Submit")
|
150 |
inputs = [prompt_input, negative_prompt, input_image]
|
151 |
submit_btn.click(fn=infer, inputs=inputs, outputs=[output_image])
|