import gradio as gr import numpy as np from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences import re from huggingface_hub import from_pretrained_keras model = from_pretrained_keras("vrclc/transliteration") # Define source and target tokenizers (replace with your actual tokenizers) source_tokens = list('abcdefghijklmnopqrstuvwxyz ') source_tokenizer = Tokenizer(char_level=True, filters='') source_tokenizer.fit_on_texts(source_tokens) malayalam_tokens = [ # Independent vowels 'അ', 'ആ', 'ഇ', 'ഈ', 'ഉ', 'ഊ', 'ഋ', 'ൠ', 'ഌ', 'ൡ', 'എ', 'ഏ', 'ഐ', 'ഒ', 'ഓ', 'ഔ', # Consonants 'ക', 'ഖ', 'ഗ', 'ഘ', 'ങ', 'ച', 'ഛ', 'ജ', 'ഝ', 'ഞ', 'ട', 'ഠ', 'ഡ', 'ഢ', 'ണ', 'ത', 'ഥ', 'ദ', 'ധ', 'ന', 'പ', 'ഫ', 'ബ', 'ഭ', 'മ', 'യ', 'ര', 'ല', 'വ', 'ശ', 'ഷ', 'സ', 'ഹ', 'ള', 'ഴ', 'റ', # Chillu letters 'ൺ', 'ൻ', 'ർ', 'ൽ', 'ൾ', # Additional characters 'ം', 'ഃ', '്', # Vowel modifiers / Signs 'ാ', 'ി', 'ീ', 'ു', 'ൂ', 'ൃ', 'ൄ', 'െ', 'േ', 'ൈ', 'ൊ', 'ോ', 'ൌ', 'ൗ', ' ' ] # Create tokenizer for Malayalam tokens target_tokenizer = Tokenizer(char_level=True, filters='') target_tokenizer.fit_on_texts(malayalam_tokens) # Load your pre-trained model max_seq_length = model.get_layer("encoder_input").input_shape[0][1] def transliterate_with_split_tokens(input_text, model, source_tokenizer, target_tokenizer, max_seq_length): """ Transliterates input text, preserving non-token characters. """ # Regular expression to split the text into tokens and non-tokens tokens_and_non_tokens = re.findall(r"([a-zA-Z]+)|([^a-zA-Z]+)", input_text) transliterated_text = "" for token_or_non_token in tokens_and_non_tokens: token = token_or_non_token[0] non_token = token_or_non_token[1] if token: input_sequence = source_tokenizer.texts_to_sequences([token])[0] input_sequence_padded = pad_sequences([input_sequence], maxlen=max_seq_length, padding='post') predicted_sequence = model.predict(input_sequence_padded) predicted_indices = np.argmax(predicted_sequence, axis=-1)[0] transliterated_word = ''.join([target_tokenizer.index_word[idx] for idx in predicted_indices if idx != 0]) transliterated_text += transliterated_word elif non_token: transliterated_text += non_token return transliterated_text def transliterate(input_text): return transliterate_with_split_tokens(input_text, model, source_tokenizer, target_tokenizer, max_seq_length) # Create Gradio interface with enhanced features def create_transliteration_interface(): # Define input and output components with more details input_textbox = gr.Textbox( lines=3, placeholder="Enter Manglish text to transliterate to Malayalam...", label="Input Text" ) output_textbox = gr.Textbox( lines=3, label="Transliterated Malayalam Text" ) # Create the Gradio interface with more comprehensive configuration interface = gr.Interface( fn=transliterate, inputs=[ gr.Textbox( lines=3, placeholder="Enter English text to transliterate to Malayalam...", label="Input Text" ) ], outputs=[ gr.Textbox( lines=3, label="Transliterated Malayalam Text" ) ], title="🌟 English to Malayalam Transliterator", description="Transliterate Manglish (Romanised Malayalam) text to Malayalam characters. Simply type or paste your Manglish text, and see the Malayalam transliteration instantly!", article="## How to Use\n1. Enter Manglish text in the input box\n2. The transliteration will appear after you SUBMIT\n3. Works with words, phrases, and sentences\n\n Model at ", examples=[ ["ente veed"], ["malayalam padikkano ? 😃"], ["india ente rajyamanu"] ], cache_examples=False, theme="huggingface" ) return interface # Launch the Gradio interface if __name__ == "__main__": iface = create_transliteration_interface() iface.launch()