Spaces:
Sleeping
Sleeping
File size: 5,390 Bytes
f17cc6c 285d9e7 f17cc6c 4f01f39 f17cc6c 4f01f39 a458f3b f17cc6c 4f01f39 f17cc6c 4f01f39 f17cc6c 4f01f39 f17cc6c 4f01f39 f17cc6c 9c70c36 f17cc6c a458f3b f17cc6c 7063ff0 f17cc6c 17629d1 f17cc6c 17629d1 f17cc6c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
# R dependencies
library(shiny)
library(shinyjs)
library(reticulate)
library(purrr)
library(jsonlite)
library(tibble)
library(ggplot2)
library(glue)
library(shinycssloaders)
library(tidyr)
library(data.table)
library(dplyr)
library(dygraphs)
library(shinyWidgets)
library(RColorBrewer)
library(pals)
library(stringr)
##################QUITAR CUANDO YA TIRE
library(reactlog)
library(feather)
library(arrow)
library(fasttime)
library(parallel)
#library(shinythemes)
library(xts)
reactlog::reactlog_enable()
#options(shiny.trace = TRUE, shiny.loglevel = "DEBUG", shiny.app_log_path = "app/shiny_logs_internal")
torch <- reticulate::import("torch")
#options(shiny.trace = TRUE)
if(torch$cuda$is_available()){
print(paste0("CUDA AVAILABLE. Num devices: ", torch$cuda$device_count()))
torch$cuda$set_device(as.integer(0))
#torch$cuda$set_device(as.integer(1))
#torch$cuda$set_device(as.integer(2))
#print(torch$cuda$memory_summary())
print(Sys.getenv("PYTORCH_CUDA_ALLOC_CONF"))
} else {
print("CUDA NOT AVAILABLE")
}
#################QUITAR CUANDO YA TIRE
# Python dependencies
#tsai_data = import("tsai.data.all")
#wandb = import("wandb")
#pd = import("pandas")
#hdbscan = import("hdbscan")
#dvats = import_from_path("dvats.all", path=paste0(Sys.getenv("HOME")))
############Just in case. Trying to get why get_enc_embs gets freezed
# Python dependencies
print("--> py dependences | Tsai")
Sys.setenv(MPLCONFIGDIR = "/tmp/")
tsai_data = reticulate::import("tsai.data.all")
print("--> py dependences | Wandb")
wandb = reticulate::import("wandb")
print("--> py dependences | PANDAS")
pd = reticulate::import("pandas")
print("--> py dependences | Hdbscan")
hdbscan = reticulate::import("hdbscan")
print("--> py dependences | Dvats")
dvats = reticulate::import_from_path("dvats.all", path=paste0(Sys.getenv("HOME")))
print("--> py dependences -->")
print("--> py_config ")
print(reticulate::py_config())
print("py_config -->")
#############
# CONFIG #
#############
QUERY_RUNS_LIMIT = 1
DEFAULT_PATH_WANDB_ARTIFACTS = paste0(Sys.getenv("HOME"), "/data/wandb_artifacts")
hdbscan_metrics <- hdbscan$dist_metrics$METRIC_MAPPING
#hdbscan_metrics <- c('euclidean', 'l2', 'l1', 'manhattan', 'cityblock', 'braycurtis', 'canberra', 'chebyshev', 'correlation', 'cosine', 'dice', 'hamming', 'jaccard', 'kulsinski', 'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath', 'sqeuclidean', 'yule', 'wminkowski', 'nan_euclidean', 'haversine')
Sys.setenv("TZ"="UTC")
DEFAULT_VALUES = list(metric_hdbscan = "euclidean",
min_cluster_size_hdbscan = 100,
min_samples_hdbscan = 15,
cluster_selection_epsilon_hdbscan = 0.08,
path_line_size = 0.08,
path_alpha = 5/10,
point_alpha = 1/10,
point_size = 1)
WANDB_ENTITY = Sys.getenv("WANDB_ENTITY")
WANDB_PROJECT = Sys.getenv("WANDB_PROJECT")
WANDB_API_KEY = Sys.getenv("WANDB_API_KEY")
####################
# HELPER FUNCTIONS #
####################
get_window_indices = function(idxs, w, s) {
idxs %>% map(function (i) {
start_index = ((i-1)*s + 1)
return(start_index:(start_index+w-1))
})
}
dyUnzoom <-function(dygraph) {
dyPlugin(
dygraph = dygraph,
name = "Unzoom",
path = system.file("plugins/unzoom.js", package = "dygraphs")
)
}
vec_dyShading <- function(dyg, from, to, color, data_rownames) {
# assuming that from, to, and color have all same length
n <- length(from)
if (n == 0) return(dyg)
new_shades <- vector(mode = "list", length = n)
for (i in 1:n) {
new_shades[[i]] <- list(from = data_rownames[from[[i]]],
to = data_rownames[to[[i]]],
color = color,
axis = "x")
}
dyg$x$shadings <- c(dyg$x$shadings, new_shades)
dyg
}
# Not used yet (it is likely to be used in the future)
make_individual_dygraph <- function(i){
plt <- dygraph(tsdf()[i],height= "170",group = "timeseries", ylab = names(tsdf())[i],width="100%") %>%
dySeries(color=color_scale_dygraph[i]) %>%
dyHighlight(hideOnMouseOut = TRUE) %>%
dyOptions(labelsUTC = TRUE) %>%
dyLegend(show = "follow", hideOnMouseOut = TRUE) %>%
dyUnzoom() %>%
dyHighlight(highlightSeriesOpts = list(strokeWidth = 3)) %>%
dyCSS(
textConnection(
"
.dygraph-ylabel {font-size: 9px; width: 80%;text-align: center;float: right}
.dygraph-legend > span { display: none; }
.dygraph-legend > span.highlight { display: inline; }"
)
)
if(i==1){
plt <-plt %>%
dyRangeSelector(height = 20, strokeColor = "")
}
plt
}
###################################
# RETRIEVE WANDB RUNS & ARTIFACTS #
###################################
api <- wandb$Api()
print("Querying encoders")
encs_l <- dvats$get_wandb_artifacts(project_path = glue(WANDB_ENTITY, "/", WANDB_PROJECT),
type = "learner",
last_version=F) %>%
discard(~ is_empty(.$aliases) | is_empty(.$metadata$train_artifact))
encs_l <- encs_l %>% set_names(encs_l %>% map(~ glue(WANDB_ENTITY, "/", WANDB_PROJECT, "/", .$name)))
#discard(~ str_detect(.$name, "dcae"))
print("Done!")
|