vuchl001 commited on
Commit
483e280
1 Parent(s): e8ad613

Delete app (1).py

Browse files
Files changed (1) hide show
  1. app (1).py +0 -35
app (1).py DELETED
@@ -1,35 +0,0 @@
1
- import gradio as gr
2
- import tensorflow as tf
3
- from PIL import Image
4
- import numpy as np
5
-
6
- # Load your custom regression model
7
- model_path = "trainpokemon_model_transferlearning.weights.h5"
8
- model_path = "pokemon_model_transferlearning.keras"
9
-
10
- #model.load_weights(model_path)
11
- model = tf.keras.models.load_model(model_path)
12
-
13
- labels = ['Ditto','Venomoth','Venusaur']
14
-
15
- # Define regression function
16
- def predict_regression(image):
17
- # Preprocess image
18
- image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
19
- image = image.resize((150, 150))#.convert('L') #resize the image to 28x28 and converts it to gray scale
20
- image = np.array(image)
21
- print(image.shape)
22
- # Predict
23
- prediction = model.predict(image[None, ...]) # Assuming single regression value
24
- confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
25
- return confidences
26
-
27
- # Create Gradio interface
28
- input_image = gr.Image()
29
- output_text = gr.Textbox(label="Predicted Pokemon")
30
- interface = gr.Interface(fn=predict_regression,
31
- inputs=input_image,
32
- outputs=gr.Label(),
33
- examples=["pokemons/train/Ditto/00000008.jpg", "images/Venomoth.jpeg", "images/Venusaur.jpeg"],
34
- description="A simple mlp classification model for image classification using the mnist dataset.")
35
- interface.launch()