Delete app (1).py
Browse files- app (1).py +0 -35
app (1).py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
-
from PIL import Image
|
4 |
-
import numpy as np
|
5 |
-
|
6 |
-
# Load your custom regression model
|
7 |
-
model_path = "trainpokemon_model_transferlearning.weights.h5"
|
8 |
-
model_path = "pokemon_model_transferlearning.keras"
|
9 |
-
|
10 |
-
#model.load_weights(model_path)
|
11 |
-
model = tf.keras.models.load_model(model_path)
|
12 |
-
|
13 |
-
labels = ['Ditto','Venomoth','Venusaur']
|
14 |
-
|
15 |
-
# Define regression function
|
16 |
-
def predict_regression(image):
|
17 |
-
# Preprocess image
|
18 |
-
image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
|
19 |
-
image = image.resize((150, 150))#.convert('L') #resize the image to 28x28 and converts it to gray scale
|
20 |
-
image = np.array(image)
|
21 |
-
print(image.shape)
|
22 |
-
# Predict
|
23 |
-
prediction = model.predict(image[None, ...]) # Assuming single regression value
|
24 |
-
confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
|
25 |
-
return confidences
|
26 |
-
|
27 |
-
# Create Gradio interface
|
28 |
-
input_image = gr.Image()
|
29 |
-
output_text = gr.Textbox(label="Predicted Pokemon")
|
30 |
-
interface = gr.Interface(fn=predict_regression,
|
31 |
-
inputs=input_image,
|
32 |
-
outputs=gr.Label(),
|
33 |
-
examples=["pokemons/train/Ditto/00000008.jpg", "images/Venomoth.jpeg", "images/Venusaur.jpeg"],
|
34 |
-
description="A simple mlp classification model for image classification using the mnist dataset.")
|
35 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|