File size: 1,640 Bytes
cf92f5c 2a7ff02 cf92f5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 |
import json
import torch
from TTS.api import TTS
import gradio as gr
# Load the language dictionary from the JSON file
with open("language_dictionary.json", "r") as f:
language_dict = json.load(f)
# Get device
device = "cuda" if torch.cuda.is_available() else "cpu"
# Function to generate audio
def generate_audio(text, language):
model_name = f"tts_models/{language}/fairseq/vits"
tts = TTS(model_name=model_name, progress_bar=False).to(device)
output_path = "output_file.wav"
tts.tts_to_file(text=text, file_path=output_path)
return output_path
# Create a list of language names for the dropdown
languages = list(language_dict.values())
iso_codes = list(language_dict.keys())
# Create Gradio interface
def run_interface():
def update_iso_code(language):
# Map selected language to its ISO code
iso_code = iso_codes[languages.index(language)]
return iso_code
with gr.Blocks() as demo:
with gr.Row():
text_input = gr.Textbox(label="Enter Text", lines=4, placeholder="Type your text here...")
language_dropdown = gr.Dropdown(
label="Select Language", choices=languages, value="English"
)
generate_button = gr.Button("Generate Audio")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
generate_button.click(
fn=lambda text, lang: generate_audio(text, update_iso_code(lang)),
inputs=[text_input, language_dropdown],
outputs=[output_audio]
)
demo.launch()
# Run the Gradio interface
if __name__ == "__main__":
run_interface()
|