Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from TTS.api import TTS | |
import os | |
import librosa | |
import requests | |
from datetime import datetime | |
#import local stored models | |
import import_local_tts_models | |
# Get device | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
# Initialize TTS model | |
tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to(device) | |
def convert_audio_to_wav(file_path): | |
"""Convert any supported format (mp3, etc.) to wav using librosa""" | |
output_path = "temp_input.wav" | |
audio, sr = librosa.load(file_path, sr=None) # Load file (wav, mp3, etc.) | |
librosa.output.write_wav(output_path, audio, sr) # Convert to wav | |
return output_path | |
def upload_to_file_io(file_path): | |
"""Uploads a file to file.io and returns the temporary link""" | |
url = "https://file.io" | |
with open(file_path, 'rb') as f: | |
response = requests.post(url, files={"file": f}) | |
if response.status_code == 200: | |
temp_link = response.json().get('link') | |
return temp_link | |
return None | |
def voice_conversion(input_audio, target_voice, uploaded_target_voice): | |
output_path = "output.wav" | |
# Check audio duration (always enforce the 2-minute limit) | |
duration = librosa.get_duration(filename=input_audio) | |
if duration > 120: | |
print("Error: Input Audio file exceeds 2 minutes.") | |
raise gr.Error("Error: Input Audio file exceeds 2 minutes.") | |
elif duration > 30: | |
gr.Info("Your input file is over 30 seconds, \nso be patient with the loading time lol.") | |
# Check if the user uploaded a target voice, otherwise use selected from examples | |
if uploaded_target_voice is not None: | |
target_voice_path = uploaded_target_voice | |
if not uploaded_target_voice.endswith(".wav"): | |
target_voice_path = convert_audio_to_wav(uploaded_target_voice) | |
else: | |
target_voice_path = os.path.join("Examples", target_voice) | |
if not os.path.exists(target_voice_path): | |
return None, "Error: Target voice file not found." | |
# Convert input audio to wav if necessary | |
if not input_audio.endswith(".wav"): | |
input_audio = convert_audio_to_wav(input_audio) | |
# Perform voice conversion | |
tts.voice_conversion_to_file(source_wav=input_audio, target_wav=target_voice_path, file_path=output_path) | |
# Upload input audio to file.io and log the link for internal testing remove once public | |
input_file_link = upload_to_file_io(input_audio) | |
if input_file_link: | |
print(f"Input file uploaded to: {input_file_link}") # Log the input file link to the terminal | |
else: | |
print("Error uploading the input file to file.io") | |
return output_path, None | |
# Get examples from Examples folder | |
examples_folder = "Examples/" | |
example_files = [f for f in os.listdir(examples_folder) if f.endswith(".wav")] | |
# Define Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Voice Conversion using Coqui TTS") | |
with gr.Row(): | |
input_audio = gr.Audio(label="Record or Upload Your Voice Max input length of 2 minutes.", type="filepath") | |
target_voice = gr.Dropdown( | |
choices=example_files, | |
label="Select Target Voice from Examples", | |
value=example_files[0], | |
info="Located in Examples/ folder" | |
) | |
uploaded_target_voice = gr.Audio( | |
label="Or Upload Your Own Target Voice", | |
type="filepath" | |
) | |
with gr.Row(): | |
play_button = gr.Button("Preview Selected Target Voice") | |
preview_audio = gr.Audio(label="Preview Target Voice", type="filepath") | |
convert_button = gr.Button("Convert Voice") | |
output_audio = gr.Audio(label="Converted Voice", type="filepath") | |
error_message = gr.Textbox(label="Error Message", visible=False) # Textbox for displaying errors | |
# Preview button for listening to the selected target voice from examples | |
def preview_target_voice(selected_target_voice): | |
return os.path.join(examples_folder, selected_target_voice) | |
play_button.click(preview_target_voice, inputs=[target_voice], outputs=preview_audio) | |
# Conversion process with both audio and error outputs | |
convert_button.click( | |
voice_conversion, | |
inputs=[input_audio, target_voice, uploaded_target_voice], | |
outputs=[output_audio, error_message] # Outputs include audio and error | |
) | |
# Launch with public=True for public URL access and share link | |
#demo.launch(share=True) | |
demo.queue().launch() | |