import gradio as gr import torch from TTS.api import TTS import os # Get device device = "cuda" if torch.cuda.is_available() else "cpu" # Initialize TTS model tts = TTS(model_name="voice_conversion_models/multilingual/vctk/freevc24", progress_bar=False).to(device) # Get examples from Examples folder examples_folder = "Examples/" example_files = [f for f in os.listdir(examples_folder) if f.endswith(".wav")] def voice_conversion(input_audio, target_voice): output_path = "output.wav" # Perform voice conversion target_voice = f"{examples_folder}{target_voice}" print(f"Target voice is: {target_voice}") tts.voice_conversion_to_file(source_wav=input_audio, target_wav=target_voice, file_path=output_path) return output_path # Define Gradio Interface with gr.Blocks() as demo: gr.Markdown("## Voice Conversion using Coqui TTS") with gr.Row(): input_audio = gr.Audio(label="Record or Upload Your Voice", type="filepath") target_voice = gr.Dropdown(choices=example_files, label="Select Target Voice from Examples", value=example_files[0], info="Located in Examples/ folder") convert_button = gr.Button("Convert Voice") output_audio = gr.Audio(label="Converted Voice", type="filepath") convert_button.click(voice_conversion, inputs=[input_audio, target_voice], outputs=output_audio) # Launch with public=True for public URL access and share link demo.launch(share=True)