File size: 29,221 Bytes
518cdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6001005
 
 
518cdf9
 
6001005
 
 
518cdf9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
print("starting...")

import os
import shutil
import subprocess
import re
from pydub import AudioSegment
import tempfile
from pydub import AudioSegment
import os
import nltk
from nltk.tokenize import sent_tokenize
import sys
import torch
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from tqdm import tqdm
import gradio as gr
from gradio import Progress
import urllib.request
import zipfile
import MeCab
import unidic

nltk.download('punkt_tab')

# Download UniDic if it's not already installed
unidic.download()

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Device selected is: {device}")

#nltk.download('punkt')  # Make sure to download the necessary models


def download_and_extract_zip(url, extract_to='.'):
    try:
        # Ensure the directory exists
        os.makedirs(extract_to, exist_ok=True)
        
        zip_path = os.path.join(extract_to, 'model.zip')
        
        # Download with progress bar
        with tqdm(unit='B', unit_scale=True, miniters=1, desc="Downloading Model") as t:
            def reporthook(blocknum, blocksize, totalsize):
                t.total = totalsize
                t.update(blocknum * blocksize - t.n)

            urllib.request.urlretrieve(url, zip_path, reporthook=reporthook)
        print(f"Downloaded zip file to {zip_path}")
        
        # Unzipping with progress bar
        with zipfile.ZipFile(zip_path, 'r') as zip_ref:
            files = zip_ref.namelist()
            with tqdm(total=len(files), unit="file", desc="Extracting Files") as t:
                for file in files:
                    if not file.endswith('/'):  # Skip directories
                        # Extract the file to the temporary directory
                        extracted_path = zip_ref.extract(file, extract_to)
                        # Move the file to the base directory
                        base_file_path = os.path.join(extract_to, os.path.basename(file))
                        os.rename(extracted_path, base_file_path)
                    t.update(1)
        
        # Cleanup: Remove the ZIP file and any empty folders
        os.remove(zip_path)
        for root, dirs, files in os.walk(extract_to, topdown=False):
            for name in dirs:
                os.rmdir(os.path.join(root, name))
        print(f"Extracted files to {extract_to}")
        
        # Check if all required files are present
        required_files = ['model.pth', 'config.json', 'vocab.json_']
        missing_files = [file for file in required_files if not os.path.exists(os.path.join(extract_to, file))]
        
        if not missing_files:
            print("All required files (model.pth, config.json, vocab.json_) found.")
        else:
            print(f"Missing files: {', '.join(missing_files)}")
    
    except Exception as e:
        print(f"Failed to download or extract zip file: {e}")



def is_folder_empty(folder_path):
    if os.path.exists(folder_path) and os.path.isdir(folder_path):
        # List directory contents
        if not os.listdir(folder_path):
            return True  # The folder is empty
        else:
            return False  # The folder is not empty
    else:
        print(f"The path {folder_path} is not a valid folder.")
        return None  # The path is not a valid folder

def remove_folder_with_contents(folder_path):
    try:
        shutil.rmtree(folder_path)
        print(f"Successfully removed {folder_path} and all of its contents.")
    except Exception as e:
        print(f"Error removing {folder_path}: {e}")




def wipe_folder(folder_path):
    # Check if the folder exists
    if not os.path.exists(folder_path):
        print(f"The folder {folder_path} does not exist.")
        return

    # Iterate over all the items in the given folder
    for item in os.listdir(folder_path):
        item_path = os.path.join(folder_path, item)
        # If it's a file, remove it and print a message
        if os.path.isfile(item_path):
            os.remove(item_path)
            print(f"Removed file: {item_path}")
        # If it's a directory, remove it recursively and print a message
        elif os.path.isdir(item_path):
            shutil.rmtree(item_path)
            print(f"Removed directory and its contents: {item_path}")
    
    print(f"All contents wiped from {folder_path}.")


# Example usage
# folder_to_wipe = 'path_to_your_folder'
# wipe_folder(folder_to_wipe)


def create_m4b_from_chapters(input_dir, ebook_file, output_dir):
    # Function to sort chapters based on their numeric order
    def sort_key(chapter_file):
        numbers = re.findall(r'\d+', chapter_file)
        return int(numbers[0]) if numbers else 0

    # Extract metadata and cover image from the eBook file
    def extract_metadata_and_cover(ebook_path):
        try:
            cover_path = ebook_path.rsplit('.', 1)[0] + '.jpg'
            subprocess.run(['ebook-meta', ebook_path, '--get-cover', cover_path], check=True)
            if os.path.exists(cover_path):
                return cover_path
        except Exception as e:
            print(f"Error extracting eBook metadata or cover: {e}")
        return None
    # Combine WAV files into a single file
    def combine_wav_files(chapter_files, output_path):
        # Initialize an empty audio segment
        combined_audio = AudioSegment.empty()

        # Sequentially append each file to the combined_audio
        for chapter_file in chapter_files:
            audio_segment = AudioSegment.from_wav(chapter_file)
            combined_audio += audio_segment
        # Export the combined audio to the output file path
        combined_audio.export(output_path, format='wav')
        print(f"Combined audio saved to {output_path}")

    # Function to generate metadata for M4B chapters
    def generate_ffmpeg_metadata(chapter_files, metadata_file):
        with open(metadata_file, 'w') as file:
            file.write(';FFMETADATA1\n')
            start_time = 0
            for index, chapter_file in enumerate(chapter_files):
                duration_ms = len(AudioSegment.from_wav(chapter_file))
                file.write(f'[CHAPTER]\nTIMEBASE=1/1000\nSTART={start_time}\n')
                file.write(f'END={start_time + duration_ms}\ntitle=Chapter {index + 1}\n')
                start_time += duration_ms

    # Generate the final M4B file using ffmpeg
    def create_m4b(combined_wav, metadata_file, cover_image, output_m4b):
        # Ensure the output directory exists
        os.makedirs(os.path.dirname(output_m4b), exist_ok=True)
        
        ffmpeg_cmd = ['ffmpeg', '-i', combined_wav, '-i', metadata_file]
        if cover_image:
            ffmpeg_cmd += ['-i', cover_image, '-map', '0:a', '-map', '2:v']
        else:
            ffmpeg_cmd += ['-map', '0:a']
        
        ffmpeg_cmd += ['-map_metadata', '1', '-c:a', 'aac', '-b:a', '192k']
        if cover_image:
            ffmpeg_cmd += ['-c:v', 'png', '-disposition:v', 'attached_pic']
        ffmpeg_cmd += [output_m4b]

        subprocess.run(ffmpeg_cmd, check=True)



    # Main logic
    chapter_files = sorted([os.path.join(input_dir, f) for f in os.listdir(input_dir) if f.endswith('.wav')], key=sort_key)
    temp_dir = tempfile.gettempdir()
    temp_combined_wav = os.path.join(temp_dir, 'combined.wav')
    metadata_file = os.path.join(temp_dir, 'metadata.txt')
    cover_image = extract_metadata_and_cover(ebook_file)
    output_m4b = os.path.join(output_dir, os.path.splitext(os.path.basename(ebook_file))[0] + '.m4b')

    combine_wav_files(chapter_files, temp_combined_wav)
    generate_ffmpeg_metadata(chapter_files, metadata_file)
    create_m4b(temp_combined_wav, metadata_file, cover_image, output_m4b)

    # Cleanup
    if os.path.exists(temp_combined_wav):
        os.remove(temp_combined_wav)
    if os.path.exists(metadata_file):
        os.remove(metadata_file)
    if cover_image and os.path.exists(cover_image):
        os.remove(cover_image)

# Example usage
# create_m4b_from_chapters('path_to_chapter_wavs', 'path_to_ebook_file', 'path_to_output_dir')






#this code right here isnt the book grabbing thing but its before to refrence in ordero to create the sepecial chapter labeled book thing with calibre idk some systems cant seem to get it so just in case but the next bit of code after this is the book grabbing code with booknlp 
import os
import subprocess
import ebooklib
from ebooklib import epub
from bs4 import BeautifulSoup
import re
import csv
import nltk

# Only run the main script if Value is True
def create_chapter_labeled_book(ebook_file_path):
    # Function to ensure the existence of a directory
    def ensure_directory(directory_path):
        if not os.path.exists(directory_path):
            os.makedirs(directory_path)
            print(f"Created directory: {directory_path}")

    ensure_directory(os.path.join(".", 'Working_files', 'Book'))

    def convert_to_epub(input_path, output_path):
        # Convert the ebook to EPUB format using Calibre's ebook-convert
        try:
            subprocess.run(['ebook-convert', input_path, output_path], check=True)
        except subprocess.CalledProcessError as e:
            print(f"An error occurred while converting the eBook: {e}")
            return False
        return True

    def save_chapters_as_text(epub_path):
        # Create the directory if it doesn't exist
        directory = os.path.join(".", "Working_files", "temp_ebook")
        ensure_directory(directory)

        # Open the EPUB file
        book = epub.read_epub(epub_path)

        previous_chapter_text = ''
        previous_filename = ''
        chapter_counter = 0

        # Iterate through the items in the EPUB file
        for item in book.get_items():
            if item.get_type() == ebooklib.ITEM_DOCUMENT:
                # Use BeautifulSoup to parse HTML content
                soup = BeautifulSoup(item.get_content(), 'html.parser')
                text = soup.get_text()

                # Check if the text is not empty
                if text.strip():
                    if len(text) < 2300 and previous_filename:
                        # Append text to the previous chapter if it's short
                        with open(previous_filename, 'a', encoding='utf-8') as file:
                            file.write('\n' + text)
                    else:
                        # Create a new chapter file and increment the counter
                        previous_filename = os.path.join(directory, f"chapter_{chapter_counter}.txt")
                        chapter_counter += 1
                        with open(previous_filename, 'w', encoding='utf-8') as file:
                            file.write(text)
                            print(f"Saved chapter: {previous_filename}")

    # Example usage
    input_ebook = ebook_file_path  # Replace with your eBook file path
    output_epub = os.path.join(".", "Working_files", "temp.epub")


    if os.path.exists(output_epub):
        os.remove(output_epub)
        print(f"File {output_epub} has been removed.")
    else:
        print(f"The file {output_epub} does not exist.")

    if convert_to_epub(input_ebook, output_epub):
        save_chapters_as_text(output_epub)

    # Download the necessary NLTK data (if not already present)
    #nltk.download('punkt')

    def process_chapter_files(folder_path, output_csv):
        with open(output_csv, 'w', newline='', encoding='utf-8') as csvfile:
            writer = csv.writer(csvfile)
            # Write the header row
            writer.writerow(['Text', 'Start Location', 'End Location', 'Is Quote', 'Speaker', 'Chapter'])

            # Process each chapter file
            chapter_files = sorted(os.listdir(folder_path), key=lambda x: int(x.split('_')[1].split('.')[0]))
            for filename in chapter_files:
                if filename.startswith('chapter_') and filename.endswith('.txt'):
                    chapter_number = int(filename.split('_')[1].split('.')[0])
                    file_path = os.path.join(folder_path, filename)

                    try:
                        with open(file_path, 'r', encoding='utf-8') as file:
                            text = file.read()
                            # Insert "NEWCHAPTERABC" at the beginning of each chapter's text
                            if text:
                                text = "NEWCHAPTERABC" + text
                            sentences = nltk.tokenize.sent_tokenize(text)
                            for sentence in sentences:
                                start_location = text.find(sentence)
                                end_location = start_location + len(sentence)
                                writer.writerow([sentence, start_location, end_location, 'True', 'Narrator', chapter_number])
                    except Exception as e:
                        print(f"Error processing file {filename}: {e}")

    # Example usage
    folder_path = os.path.join(".", "Working_files", "temp_ebook")
    output_csv = os.path.join(".", "Working_files", "Book", "Other_book.csv")

    process_chapter_files(folder_path, output_csv)

    def sort_key(filename):
        """Extract chapter number for sorting."""
        match = re.search(r'chapter_(\d+)\.txt', filename)
        return int(match.group(1)) if match else 0

    def combine_chapters(input_folder, output_file):
        # Create the output folder if it doesn't exist
        os.makedirs(os.path.dirname(output_file), exist_ok=True)

        # List all txt files and sort them by chapter number
        files = [f for f in os.listdir(input_folder) if f.endswith('.txt')]
        sorted_files = sorted(files, key=sort_key)

        with open(output_file, 'w', encoding='utf-8') as outfile:  # Specify UTF-8 encoding here
            for i, filename in enumerate(sorted_files):
                with open(os.path.join(input_folder, filename), 'r', encoding='utf-8') as infile:  # And here
                    outfile.write(infile.read())
                    # Add the marker unless it's the last file
                    if i < len(sorted_files) - 1:
                        outfile.write("\nNEWCHAPTERABC\n")

    # Paths
    input_folder = os.path.join(".", 'Working_files', 'temp_ebook')
    output_file = os.path.join(".", 'Working_files', 'Book', 'Chapter_Book.txt')


    # Combine the chapters
    combine_chapters(input_folder, output_file)

    ensure_directory(os.path.join(".", "Working_files", "Book"))


#create_chapter_labeled_book()




import os
import subprocess
import sys
import torchaudio

# Check if Calibre's ebook-convert tool is installed
def calibre_installed():
    try:
        subprocess.run(['ebook-convert', '--version'], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        return True
    except FileNotFoundError:
        print("Calibre is not installed. Please install Calibre for this functionality.")
        return False


import os
import torch
from TTS.api import TTS
from nltk.tokenize import sent_tokenize
from pydub import AudioSegment
# Assuming split_long_sentence and wipe_folder are defined elsewhere in your code

default_target_voice_path = "default_voice.wav"  # Ensure this is a valid path
default_language_code = "en"
def combine_wav_files(input_directory, output_directory, file_name):
    # Ensure that the output directory exists, create it if necessary
    os.makedirs(output_directory, exist_ok=True)

    # Specify the output file path
    output_file_path = os.path.join(output_directory, file_name)

    # Initialize an empty audio segment
    combined_audio = AudioSegment.empty()

    # Get a list of all .wav files in the specified input directory and sort them
    input_file_paths = sorted(
        [os.path.join(input_directory, f) for f in os.listdir(input_directory) if f.endswith(".wav")],
        key=lambda f: int(''.join(filter(str.isdigit, f)))
    )

    # Sequentially append each file to the combined_audio
    for input_file_path in input_file_paths:
        audio_segment = AudioSegment.from_wav(input_file_path)
        combined_audio += audio_segment

    # Export the combined audio to the output file path
    combined_audio.export(output_file_path, format='wav')

    print(f"Combined audio saved to {output_file_path}")

# Function to split long strings into parts
def split_long_sentence(sentence, max_length=249, max_pauses=10):
    """
    Splits a sentence into parts based on length or number of pauses without recursion.
    
    :param sentence: The sentence to split.
    :param max_length: Maximum allowed length of a sentence.
    :param max_pauses: Maximum allowed number of pauses in a sentence.
    :return: A list of sentence parts that meet the criteria.
    """
    parts = []
    while len(sentence) > max_length or sentence.count(',') + sentence.count(';') + sentence.count('.') > max_pauses:
        possible_splits = [i for i, char in enumerate(sentence) if char in ',;.' and i < max_length]
        if possible_splits:
            # Find the best place to split the sentence, preferring the last possible split to keep parts longer
            split_at = possible_splits[-1] + 1
        else:
            # If no punctuation to split on within max_length, split at max_length
            split_at = max_length
        
        # Split the sentence and add the first part to the list
        parts.append(sentence[:split_at].strip())
        sentence = sentence[split_at:].strip()
    
    # Add the remaining part of the sentence
    parts.append(sentence)
    return parts

"""
if 'tts' not in locals():
    tts = TTS(selected_tts_model, progress_bar=True).to(device)
"""
from tqdm import tqdm

# Convert chapters to audio using XTTS

def convert_chapters_to_audio_custom_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None, custom_model=None):

    if target_voice_path==None:
        target_voice_path = default_target_voice_path

    if custom_model:
        print("Loading custom model...")
        config = XttsConfig()
        config.load_json(custom_model['config'])
        model = Xtts.init_from_config(config)
        model.load_checkpoint(config, checkpoint_path=custom_model['model'], vocab_path=custom_model['vocab'], use_deepspeed=False)
        model.device
        print("Computing speaker latents...")
        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=[target_voice_path])
    else:
        selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
        tts = TTS(selected_tts_model, progress_bar=False).to(device)

    if not os.path.exists(output_audio_dir):
        os.makedirs(output_audio_dir)

    for chapter_file in sorted(os.listdir(chapters_dir)):
        if chapter_file.endswith('.txt'):
            match = re.search(r"chapter_(\d+).txt", chapter_file)
            if match:
                chapter_num = int(match.group(1))
            else:
                print(f"Skipping file {chapter_file} as it does not match the expected format.")
                continue

            chapter_path = os.path.join(chapters_dir, chapter_file)
            output_file_name = f"audio_chapter_{chapter_num}.wav"
            output_file_path = os.path.join(output_audio_dir, output_file_name)
            temp_audio_directory = os.path.join(".", "Working_files", "temp")
            os.makedirs(temp_audio_directory, exist_ok=True)
            temp_count = 0

            with open(chapter_path, 'r', encoding='utf-8') as file:
                chapter_text = file.read()
                sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
                for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
                    fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
                    for fragment in fragments:
                        if fragment != "":
                            print(f"Generating fragment: {fragment}...")
                            fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
                            if custom_model:
                                out = model.inference(fragment, language, gpt_cond_latent, speaker_embedding, temperature=0.7)
                                torchaudio.save(fragment_file_path, torch.tensor(out["wav"]).unsqueeze(0), 24000)
                            else:
                                speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
                                language_code = language if language else default_language_code
                                tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
                            temp_count += 1

            combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
            wipe_folder(temp_audio_directory)
            print(f"Converted chapter {chapter_num} to audio.")



def convert_chapters_to_audio_standard_model(chapters_dir, output_audio_dir, target_voice_path=None, language=None):
    selected_tts_model = "tts_models/multilingual/multi-dataset/xtts_v2"
    tts = TTS(selected_tts_model, progress_bar=False).to(device)

    if not os.path.exists(output_audio_dir):
        os.makedirs(output_audio_dir)

    for chapter_file in sorted(os.listdir(chapters_dir)):
        if chapter_file.endswith('.txt'):
            match = re.search(r"chapter_(\d+).txt", chapter_file)
            if match:
                chapter_num = int(match.group(1))
            else:
                print(f"Skipping file {chapter_file} as it does not match the expected format.")
                continue

            chapter_path = os.path.join(chapters_dir, chapter_file)
            output_file_name = f"audio_chapter_{chapter_num}.wav"
            output_file_path = os.path.join(output_audio_dir, output_file_name)
            temp_audio_directory = os.path.join(".", "Working_files", "temp")
            os.makedirs(temp_audio_directory, exist_ok=True)
            temp_count = 0

            with open(chapter_path, 'r', encoding='utf-8') as file:
                chapter_text = file.read()
                sentences = sent_tokenize(chapter_text, language='italian' if language == 'it' else 'english')
                for sentence in tqdm(sentences, desc=f"Chapter {chapter_num}"):
                    fragments = split_long_sentence(sentence, max_length=249 if language == "en" else 213, max_pauses=10)
                    for fragment in fragments:
                        if fragment != "":
                            print(f"Generating fragment: {fragment}...")
                            fragment_file_path = os.path.join(temp_audio_directory, f"{temp_count}.wav")
                            speaker_wav_path = target_voice_path if target_voice_path else default_target_voice_path
                            language_code = language if language else default_language_code
                            tts.tts_to_file(text=fragment, file_path=fragment_file_path, speaker_wav=speaker_wav_path, language=language_code)
                            temp_count += 1

            combine_wav_files(temp_audio_directory, output_audio_dir, output_file_name)
            wipe_folder(temp_audio_directory)
            print(f"Converted chapter {chapter_num} to audio.")



# Define the functions to be used in the Gradio interface
def convert_ebook_to_audio(ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url=None, progress=gr.Progress()):
    ebook_file_path = ebook_file.name
    target_voice = target_voice_file.name if target_voice_file else None
    custom_model = None


    working_files = os.path.join(".", "Working_files", "temp_ebook")
    full_folder_working_files = os.path.join(".", "Working_files")
    chapters_directory = os.path.join(".", "Working_files", "temp_ebook")
    output_audio_directory = os.path.join(".", 'Chapter_wav_files')
    remove_folder_with_contents(full_folder_working_files)
    remove_folder_with_contents(output_audio_directory)

    if use_custom_model and custom_model_file and custom_config_file and custom_vocab_file:
        custom_model = {
            'model': custom_model_file.name,
            'config': custom_config_file.name,
            'vocab': custom_vocab_file.name
        }
    if use_custom_model and custom_model_url:
        print(f"Received custom model URL: {custom_model_url}")
        download_dir = os.path.join(".", "Working_files", "custom_model")
        download_and_extract_zip(custom_model_url, download_dir)
        custom_model = {
            'model': os.path.join(download_dir, 'model.pth'),
            'config': os.path.join(download_dir, 'config.json'),
            'vocab': os.path.join(download_dir, 'vocab.json_')
        }
    
    try:
        progress(0, desc="Starting conversion")
    except Exception as e:
        print(f"Error updating progress: {e}")
    
    if not calibre_installed():
        return "Calibre is not installed."
    
    
    try:
        progress(0.1, desc="Creating chapter-labeled book")
    except Exception as e:
        print(f"Error updating progress: {e}")
    
    create_chapter_labeled_book(ebook_file_path)
    audiobook_output_path = os.path.join(".", "Audiobooks")
    
    try:
        progress(0.3, desc="Converting chapters to audio")
    except Exception as e:
        print(f"Error updating progress: {e}")
    
    if use_custom_model:
        convert_chapters_to_audio_custom_model(chapters_directory, output_audio_directory, target_voice, language, custom_model)
    else:
        convert_chapters_to_audio_standard_model(chapters_directory, output_audio_directory, target_voice, language)
    
    try:
        progress(0.9, desc="Creating M4B from chapters")
    except Exception as e:
        print(f"Error updating progress: {e}")
    
    create_m4b_from_chapters(output_audio_directory, ebook_file_path, audiobook_output_path)
    
    # Get the name of the created M4B file
    m4b_filename = os.path.splitext(os.path.basename(ebook_file_path))[0] + '.m4b'
    m4b_filepath = os.path.join(audiobook_output_path, m4b_filename)

    try:
        progress(1.0, desc="Conversion complete")
    except Exception as e:
        print(f"Error updating progress: {e}")
    print(f"Audiobook created at {m4b_filepath}")
    return f"Audiobook created at {m4b_filepath}", m4b_filepath


def list_audiobook_files(audiobook_folder):
    # List all files in the audiobook folder
    files = []
    for filename in os.listdir(audiobook_folder):
        if filename.endswith('.m4b'):  # Adjust the file extension as needed
            files.append(os.path.join(audiobook_folder, filename))
    return files

def download_audiobooks():
    audiobook_output_path = os.path.join(".", "Audiobooks")
    return list_audiobook_files(audiobook_output_path)


language_options = [
    "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "hu", "ko"
]

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="blue",
    neutral_hue="blue",
    text_size=gr.themes.sizes.text_md,
)

# Gradio UI setup
with gr.Blocks(theme=theme) as demo:
    gr.Markdown(
    """
    # eBook to Audiobook Converter
    
    Transform your eBooks into immersive audiobooks with optional custom TTS models.
    """
    )
    
    with gr.Row():
        with gr.Column(scale=3):
            ebook_file = gr.File(label="eBook File")
            target_voice_file = gr.File(label="Target Voice File (Optional)")
            language = gr.Dropdown(label="Language", choices=language_options, value="en")
        
        with gr.Column(scale=3):
            use_custom_model = gr.Checkbox(label="Use Custom Model")
            custom_model_file = gr.File(label="Custom Model File (Optional)", visible=False)
            custom_config_file = gr.File(label="Custom Config File (Optional)", visible=False)
            custom_vocab_file = gr.File(label="Custom Vocab File (Optional)", visible=False)
            custom_model_url = gr.Textbox(label="Custom Model Zip URL (Optional)", visible=False)

    convert_btn = gr.Button("Convert to Audiobook", variant="primary")
    output = gr.Textbox(label="Conversion Status")
    audio_player = gr.Audio(label="Audiobook Player", type="filepath")
    download_btn = gr.Button("Download Audiobook Files")
    download_files = gr.File(label="Download Files", interactive=False)

    convert_btn.click(
        convert_ebook_to_audio,
        inputs=[ebook_file, target_voice_file, language, use_custom_model, custom_model_file, custom_config_file, custom_vocab_file, custom_model_url],
        outputs=[output, audio_player]
    )

    use_custom_model.change(
        lambda x: [gr.update(visible=x)] * 4,
        inputs=[use_custom_model],
        outputs=[custom_model_file, custom_config_file, custom_vocab_file, custom_model_url]
    )

    download_btn.click(
        download_audiobooks,
        outputs=[download_files]
    )

demo.launch(share=True)