Spaces:
Running
Running
feat: add vietnamese normalize
Browse files- .gitignore +1 -0
- app.py +55 -34
.gitignore
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
vixtts-demo.code-workspace
|
2 |
output.wav
|
3 |
model/
|
|
|
4 |
|
5 |
# Byte-compiled / optimized / DLL files
|
6 |
__pycache__/
|
|
|
1 |
vixtts-demo.code-workspace
|
2 |
output.wav
|
3 |
model/
|
4 |
+
test_api.ipynb
|
5 |
|
6 |
# Byte-compiled / optimized / DLL files
|
7 |
__pycache__/
|
app.py
CHANGED
@@ -1,14 +1,3 @@
|
|
1 |
-
import os
|
2 |
-
import time
|
3 |
-
import uuid
|
4 |
-
|
5 |
-
import torch
|
6 |
-
import torchaudio
|
7 |
-
|
8 |
-
# download for mecab
|
9 |
-
os.system("python -m unidic download")
|
10 |
-
|
11 |
-
|
12 |
import csv
|
13 |
import datetime
|
14 |
import os
|
@@ -68,36 +57,55 @@ if not "vi" in supported_languages:
|
|
68 |
supported_languages.append("vi")
|
69 |
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
def predict(
|
72 |
prompt,
|
73 |
language,
|
74 |
audio_file_pth,
|
75 |
-
|
76 |
):
|
77 |
if language not in supported_languages:
|
78 |
-
gr.Warning(
|
79 |
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
80 |
)
|
81 |
|
82 |
-
return (
|
83 |
-
None,
|
84 |
-
None,
|
85 |
-
None,
|
86 |
-
None,
|
87 |
-
)
|
88 |
|
89 |
speaker_wav = audio_file_pth
|
90 |
|
91 |
if len(prompt) < 2:
|
92 |
-
gr.Warning("Please give a longer prompt text")
|
93 |
-
return (None,
|
94 |
-
|
95 |
-
if len(prompt) > 200:
|
96 |
-
gr.Warning(
|
97 |
-
"Text length limited to 200 characters for this demo, please try shorter text. You can clone this space and edit code for your own usage"
|
98 |
-
)
|
99 |
-
return (None, None, None, None)
|
100 |
-
|
101 |
try:
|
102 |
metrics_text = ""
|
103 |
t_latent = time.time()
|
@@ -115,13 +123,16 @@ def predict(
|
|
115 |
|
116 |
except Exception as e:
|
117 |
print("Speaker encoding error", str(e))
|
118 |
-
gr.Warning(
|
119 |
"It appears something wrong with reference, did you unmute your microphone?"
|
120 |
)
|
121 |
-
return (None,
|
122 |
|
123 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
124 |
|
|
|
|
|
|
|
125 |
print("I: Generating new audio...")
|
126 |
t0 = time.time()
|
127 |
out = MODEL.inference(
|
@@ -131,6 +142,7 @@ def predict(
|
|
131 |
speaker_embedding,
|
132 |
repetition_penalty=5.0,
|
133 |
temperature=0.75,
|
|
|
134 |
)
|
135 |
inference_time = time.time() - t0
|
136 |
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
@@ -140,6 +152,11 @@ def predict(
|
|
140 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
141 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
142 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
|
|
|
|
|
|
|
|
|
|
143 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
144 |
|
145 |
except RuntimeError as e:
|
@@ -158,7 +175,6 @@ def predict(
|
|
158 |
prompt,
|
159 |
language,
|
160 |
audio_file_pth,
|
161 |
-
voice_cleanup,
|
162 |
]
|
163 |
error_data = [str(e) if type(e) != str else e for e in error_data]
|
164 |
print(error_data)
|
@@ -198,8 +214,8 @@ def predict(
|
|
198 |
else:
|
199 |
if "Failed to decode" in str(e):
|
200 |
print("Speaker encoding error", str(e))
|
201 |
-
gr.Warning(
|
202 |
-
"It appears something wrong with reference, did you unmute your microphone?"
|
203 |
)
|
204 |
else:
|
205 |
print("RuntimeError: non device-side assert error:", str(e))
|
@@ -230,7 +246,7 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
230 |
input_text_gr = gr.Textbox(
|
231 |
label="Text Prompt",
|
232 |
info="One or two sentences at a time is better. Up to 200 text characters.",
|
233 |
-
value="
|
234 |
)
|
235 |
language_gr = gr.Dropdown(
|
236 |
label="Language",
|
@@ -258,6 +274,11 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
258 |
max_choices=1,
|
259 |
value="vi",
|
260 |
)
|
|
|
|
|
|
|
|
|
|
|
261 |
ref_gr = gr.Audio(
|
262 |
label="Reference Audio",
|
263 |
info="Click on the ✎ button to upload your own target speaker audio",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import csv
|
2 |
import datetime
|
3 |
import os
|
|
|
57 |
supported_languages.append("vi")
|
58 |
|
59 |
|
60 |
+
def normalize_vietnamese_text(text):
|
61 |
+
text = (
|
62 |
+
TTSnorm(text, unknown=False, lower=False, rule=True)
|
63 |
+
.replace("..", ".")
|
64 |
+
.replace("!.", "!")
|
65 |
+
.replace("?.", "?")
|
66 |
+
.replace(" .", ".")
|
67 |
+
.replace(" ,", ",")
|
68 |
+
.replace('"', "")
|
69 |
+
.replace("'", "")
|
70 |
+
.replace("AI", "Ây Ai")
|
71 |
+
.replace("A.I", "Ây Ai")
|
72 |
+
)
|
73 |
+
return text
|
74 |
+
|
75 |
+
|
76 |
+
def calculate_keep_len(text, lang):
|
77 |
+
"""Simple hack for short sentences"""
|
78 |
+
if lang in ["ja", "zh-cn"]:
|
79 |
+
return -1
|
80 |
+
|
81 |
+
word_count = len(text.split())
|
82 |
+
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
|
83 |
+
|
84 |
+
if word_count < 5:
|
85 |
+
return 15000 * word_count + 2000 * num_punct
|
86 |
+
elif word_count < 10:
|
87 |
+
return 13000 * word_count + 2000 * num_punct
|
88 |
+
return -1
|
89 |
+
|
90 |
+
|
91 |
def predict(
|
92 |
prompt,
|
93 |
language,
|
94 |
audio_file_pth,
|
95 |
+
normalize_text=True,
|
96 |
):
|
97 |
if language not in supported_languages:
|
98 |
+
metrics_text = gr.Warning(
|
99 |
f"Language you put {language} in is not in is not in our Supported Languages, please choose from dropdown"
|
100 |
)
|
101 |
|
102 |
+
return (None, metrics_text)
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
speaker_wav = audio_file_pth
|
105 |
|
106 |
if len(prompt) < 2:
|
107 |
+
metrics_text = gr.Warning("Please give a longer prompt text")
|
108 |
+
return (None, metrics_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
metrics_text = ""
|
111 |
t_latent = time.time()
|
|
|
123 |
|
124 |
except Exception as e:
|
125 |
print("Speaker encoding error", str(e))
|
126 |
+
metrics_text = gr.Warning(
|
127 |
"It appears something wrong with reference, did you unmute your microphone?"
|
128 |
)
|
129 |
+
return (None, metrics_text)
|
130 |
|
131 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
132 |
|
133 |
+
if normalize_text and language == "vi":
|
134 |
+
prompt = normalize_vietnamese_text(prompt)
|
135 |
+
|
136 |
print("I: Generating new audio...")
|
137 |
t0 = time.time()
|
138 |
out = MODEL.inference(
|
|
|
142 |
speaker_embedding,
|
143 |
repetition_penalty=5.0,
|
144 |
temperature=0.75,
|
145 |
+
enable_text_splitting=True,
|
146 |
)
|
147 |
inference_time = time.time() - t0
|
148 |
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
|
|
|
152 |
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
|
153 |
print(f"Real-time factor (RTF): {real_time_factor}")
|
154 |
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
|
155 |
+
|
156 |
+
# Temporary hack for short sentences
|
157 |
+
keep_len = calculate_keep_len(prompt, language)
|
158 |
+
out["wav"] = out["wav"][:keep_len]
|
159 |
+
|
160 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
161 |
|
162 |
except RuntimeError as e:
|
|
|
175 |
prompt,
|
176 |
language,
|
177 |
audio_file_pth,
|
|
|
178 |
]
|
179 |
error_data = [str(e) if type(e) != str else e for e in error_data]
|
180 |
print(error_data)
|
|
|
214 |
else:
|
215 |
if "Failed to decode" in str(e):
|
216 |
print("Speaker encoding error", str(e))
|
217 |
+
metrics_text = gr.Warning(
|
218 |
+
metrics_text="It appears something wrong with reference, did you unmute your microphone?"
|
219 |
)
|
220 |
else:
|
221 |
print("RuntimeError: non device-side assert error:", str(e))
|
|
|
246 |
input_text_gr = gr.Textbox(
|
247 |
label="Text Prompt",
|
248 |
info="One or two sentences at a time is better. Up to 200 text characters.",
|
249 |
+
value="Xin chào, tôi là một mô hình chuyển đổi văn bản thành giọng nói tiếng Việt",
|
250 |
)
|
251 |
language_gr = gr.Dropdown(
|
252 |
label="Language",
|
|
|
274 |
max_choices=1,
|
275 |
value="vi",
|
276 |
)
|
277 |
+
normalize_text = gr.Checkbox(
|
278 |
+
label="Normalize Vietnamese Text",
|
279 |
+
info="Normalize Vietnamese Text",
|
280 |
+
default=True,
|
281 |
+
)
|
282 |
ref_gr = gr.Audio(
|
283 |
label="Reference Audio",
|
284 |
info="Click on the ✎ button to upload your own target speaker audio",
|