Spaces:
Runtime error
Runtime error
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import streamlit as st | |
import torch | |
import textwrap | |
import plotly.express as px | |
df = px.data.iris() | |
def get_img_as_base64(file): | |
with open(file, "rb") as f: | |
data = f.read() | |
return base64.b64encode(data).decode() | |
#img = get_img_as_base64("https://catherineasquithgallery.com/uploads/posts/2021-02/1612739741_65-p-goluboi-fon-tsifri-110.jpg") | |
page_bg_img = f""" | |
<style> | |
[data-testid="stAppViewContainer"] > .main {{ | |
background-image: url("https://i.pinimg.com/originals/9f/57/bd/9f57bd45d33eb906fdb3d7ffe22e2058.png"); | |
background-size: 70%; | |
background-position: top left; | |
background-repeat: no-repeat; | |
background-attachment: local; | |
}} | |
# [data-testid="stSidebar"] > div:first-child {{ | |
# background-image: url("https://catherineasquithgallery.com/uploads/posts/2021-02/1614542041_37-p-fon-belii-tekstura-43.jpg"); | |
# background-size: 100%; | |
# background-position: center; | |
# background-repeat: no-repeat; | |
# background-attachment: fixed; | |
# }} | |
[data-testid="stHeader"] {{ | |
background: rgba(0,0,0,0); | |
}} | |
[data-testid="stToolbar"] {{ | |
right: 2rem; | |
}} | |
div.css-1n76uvr.esravye0 {{ | |
background-color: rgba(238, 238, 238, 0.5); | |
border: 10px solid #EEEEEE; | |
padding: 5% 5% 5% 10%; | |
border-radius: 5px; | |
}} | |
</style> | |
""" | |
st.markdown(page_bg_img, unsafe_allow_html=True) | |
st.markdown('## Генерация текста GPT-моделью') | |
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') | |
model = GPT2LMHeadModel.from_pretrained( | |
'sberbank-ai/rugpt3small_based_on_gpt2', | |
output_attentions = False, | |
output_hidden_states = False, | |
) | |
# Вешаем сохраненные веса на нашу модель | |
model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu'))) | |
col1, col2, col3 = st.columns([5, 2, 12]) | |
with col1: | |
length = st.slider('Длина генерируемой последовательности:', 8, 256, 16) | |
num_samples = st.slider('Число генераций:', 1, 10, 1) | |
temperature = st.slider('Температура:', 1.0, 10.0, 2.0) | |
top_k = st.slider('Количество наиболее вероятных слов генерации:', 10, 200, 50) | |
top_p = st.slider('Минимальная суммарная вероятность топовых слов:', 0.4, 1.0, 0.9) | |
with col2: | |
pass | |
with col3: | |
prompt = st.text_input('Введите текст:') | |
if st.button('Сгенерировать текст'): | |
with torch.inference_mode(): | |
prompt = tokenizer.encode(prompt, return_tensors='pt') | |
out = model.generate( | |
input_ids=prompt, | |
max_length=length, | |
num_beams=5, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
no_repeat_ngram_size=3, | |
num_return_sequences=num_samples, | |
).cpu().numpy() | |
for i, out_ in enumerate(out): | |
st.write(f'Текст {i+1}:') | |
st.write(textwrap.fill(tokenizer.decode(out_), 100)) | |