Spaces:
Runtime error
Runtime error
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
import streamlit as st | |
import torch | |
import textwrap | |
import plotly.express as px | |
from streamlit_extras.let_it_rain import rain | |
rain( | |
emoji="๐", | |
font_size=54, | |
falling_speed=5, | |
animation_length="infinite", | |
) | |
st.header(':green[Text generation by GPT2 model]') | |
tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') | |
model = GPT2LMHeadModel.from_pretrained( | |
'sberbank-ai/rugpt3small_based_on_gpt2', | |
output_attentions = False, | |
output_hidden_states = False, | |
) | |
model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu'))) | |
length = st.sidebar.slider('**Generated sequence length:**', 8, 256, 15) | |
if length > 100: | |
st.warning("This is very hard for me, please have pity on me. Could you lower the value?", icon="๐ค") | |
num_samples = st.sidebar.slider('**Number of generations:**', 1, 10, 1) | |
if num_samples > 4: | |
st.warning("OH MY ..., I have to work late again!!! Could you lower the value?", icon="๐ค") | |
temperature = st.sidebar.slider('**Temperature:**', 0.1, 10.0, 3.0) | |
if temperature > 6.0: | |
st.info('What? You want to get some kind of bullshit as a result? Turn down the temperature', icon="๐ค") | |
top_k = st.sidebar.slider('**Number of most likely generation words:**', 10, 200, 50) | |
top_p = st.sidebar.slider('**Minimum total probability of top words:**', 0.4, 1.0, 0.9) | |
prompt = st.text_input('**Enter text ๐:**') | |
if st.button('**Generate text**'): | |
image_container = st.empty() | |
image_container.image("pict/wait.jpeg", caption="that's so long!!!", use_column_width=True) | |
with torch.inference_mode(): | |
prompt = tokenizer.encode(prompt, return_tensors='pt') | |
out = model.generate( | |
input_ids=prompt, | |
max_length=length, | |
num_beams=8, | |
do_sample=True, | |
temperature=temperature, | |
top_k=top_k, | |
top_p=top_p, | |
no_repeat_ngram_size=3, | |
num_return_sequences=num_samples, | |
).cpu().numpy() | |
image_container.empty() | |
st.write('**_ะ ะตะทัะปััะฐั_** ๐') | |
for i, out_ in enumerate(out): | |
# audio_file = open('pict/pole-chudes-priz.mp3', 'rb') | |
# audio_bytes = audio_file.read() | |
# st.audio(audio_bytes, format='audio/mp3') | |
with st.expander(f'ะขะตะบัั {i+1}:'): | |
st.write(textwrap.fill(tokenizer.decode(out_), 100)) | |
st.image("pict/wow.png") | |