from transformers import GPT2LMHeadModel, GPT2Tokenizer import streamlit as st import torch import textwrap import plotly.express as px from streamlit_extras.let_it_rain import rain rain( emoji="๐ŸŽˆ", font_size=54, falling_speed=5, animation_length="infinite", ) st.header(':green[Text generation by GPT2 model]') tokenizer = GPT2Tokenizer.from_pretrained('sberbank-ai/rugpt3small_based_on_gpt2') model = GPT2LMHeadModel.from_pretrained( 'sberbank-ai/rugpt3small_based_on_gpt2', output_attentions = False, output_hidden_states = False, ) model.load_state_dict(torch.load('model.pt', map_location=torch.device('cpu'))) length = st.sidebar.slider('**Generated sequence length:**', 8, 256, 15) if length > 100: st.warning("This is very hard for me, please have pity on me. Could you lower the value?", icon="๐Ÿค–") num_samples = st.sidebar.slider('**Number of generations:**', 1, 10, 1) if num_samples > 4: st.warning("OH MY ..., I have to work late again!!! Could you lower the value?", icon="๐Ÿค–") temperature = st.sidebar.slider('**Temperature:**', 0.1, 10.0, 3.0) if temperature > 6.0: st.info('What? You want to get some kind of bullshit as a result? Turn down the temperature', icon="๐Ÿค–") top_k = st.sidebar.slider('**Number of most likely generation words:**', 10, 200, 50) top_p = st.sidebar.slider('**Minimum total probability of top words:**', 0.4, 1.0, 0.9) prompt = st.text_input('**Enter text ๐Ÿ‘‡:**') if st.button('**Generate text**'): image_container = st.empty() image_container.image("pict/wait.jpeg", caption="that's so long!!!", use_column_width=True) with torch.inference_mode(): prompt = tokenizer.encode(prompt, return_tensors='pt') out = model.generate( input_ids=prompt, max_length=length, num_beams=8, do_sample=True, temperature=temperature, top_k=top_k, top_p=top_p, no_repeat_ngram_size=3, num_return_sequences=num_samples, ).cpu().numpy() image_container.empty() st.write('**_ะ ะตะทัƒะปัŒั‚ะฐั‚_** ๐Ÿ‘‡') for i, out_ in enumerate(out): # audio_file = open('pict/pole-chudes-priz.mp3', 'rb') # audio_bytes = audio_file.read() # st.audio(audio_bytes, format='audio/mp3') with st.expander(f'ะขะตะบัั‚ {i+1}:'): st.write(textwrap.fill(tokenizer.decode(out_), 100)) st.image("pict/wow.png")