Spaces:
Sleeping
Sleeping
File size: 2,666 Bytes
19d19d4 44921ac 19d19d4 44921ac 19d19d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
from abc import ABC, abstractmethod
from nervaluate import Evaluator
from sklearn.metrics import classification_report
from token_level_output import get_token_output_labels
class EvaluationMetric(ABC):
"""Base class defining the attributes & methods of an evaluation metric"""
name: str
description: str
@abstractmethod
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
pass
class PartialSpanOverlapMetric(EvaluationMetric):
def __init__(self) -> None:
super().__init__()
self.name = "Span Based Evaluation with Partial Overlap"
self.description = ""
@staticmethod
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
evaluator = Evaluator([gt_ner_span], [pred_ner_span], tags=tags)
return round(evaluator.evaluate()[0]["ent_type"]["f1"], 2)
class ExactSpanOverlapMetric(EvaluationMetric):
def __init__(self) -> None:
super().__init__()
self.name = "Span Based Evaluation with Exact Overlap"
self.description = ""
@staticmethod
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
evaluator = Evaluator([gt_ner_span], [pred_ner_span], tags=tags)
return round(evaluator.evaluate()[0]["strict"]["f1"], 2)
class TokenMicroMetric(EvaluationMetric):
def __init__(self) -> None:
super().__init__()
self.name = "Span Based Evaluation with Micro Average"
self.description = ""
@staticmethod
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
return round(
classification_report(
get_token_output_labels(gt_ner_span, text),
get_token_output_labels(pred_ner_span, text),
labels=tags,
output_dict=True,
)["micro avg"]["f1-score"],
2,
)
class TokenMacroMetric(EvaluationMetric):
def __init__(self) -> None:
super().__init__()
self.name = "Token Based Evaluation with Macro Average"
self.description = ""
@staticmethod
def get_evaluation_metric(gt_ner_span, pred_ner_span, text, tags) -> float:
return round(
classification_report(
get_token_output_labels(gt_ner_span, text),
get_token_output_labels(pred_ner_span, text),
labels=tags,
output_dict=True,
)["macro avg"]["f1-score"],
2,
)
EVALUATION_METRICS = [
PartialSpanOverlapMetric(),
ExactSpanOverlapMetric(),
TokenMicroMetric(),
TokenMacroMetric(),
]
|