ner_evaluation_metrics / token_level_output.py
wadood's picture
init working commit
44921ac
import re
class WhitespaceTokenSplitter:
def __init__(self):
self.whitespace_pattern = re.compile(r"\w+(?:[-_]\w+)*|\S")
def __call__(self, text):
for match in self.whitespace_pattern.finditer(text):
yield match.group(), match.start(), match.end()
tokenizer = WhitespaceTokenSplitter()
def get_char_label_map(ner_spans: list):
"""return a dict with char indices(int) as keys and the label they belong to as values
example -- {1:'label1', 2: 'label1', 5:'label2', 5:'label2'}
note: the char indices that do not belong to a span do not exist in the map
"""
char_label_map = {}
for span in ner_spans:
char_label_map = {
**char_label_map,
**{
char_index: span["label"]
for char_index in range(span["start"], span["end"])
},
}
return char_label_map
def get_tokens(text: str) -> list[str]:
tokens_with_offsets = list(tokenizer(text))
return [token for token, start, end in tokens_with_offsets]
def get_token_offsets(text: str) -> list[tuple[int, int]]:
tokens_with_offsets = list(tokenizer(text))
return [(start, end) for token, start, end in tokens_with_offsets]
def get_list_of_token_label_tuples(
tokens: list[str],
token_spans: list[tuple[int, int]],
char_label_map: dict[int, str],
) -> list[tuple[str, str]]:
"""
returns a list of tuples with first element as token and second element as the label
example - [('a', 'O'), ('cat', 'ANIMAL'), ('sits', 'O')]
note: the label of a token is decided based on the max chars in the token belonging to a span
"""
token_labels = []
for token, offsets in zip(tokens, token_spans):
if offsets[0] == offsets[1]:
token_labels.append((token, "O"))
continue
char_labels = [
char_label_map.get(char_index, "O") for char_index in range(*offsets)
]
token_label = max(set(char_labels), key=char_labels.count)
token_labels.append((token, token_label))
return token_labels
def get_token_outputs(ner_spans, parent_text):
char_label_map = get_char_label_map(ner_spans)
token_offsets = get_token_offsets(parent_text)
tokens = get_tokens(parent_text)
return get_list_of_token_label_tuples(tokens, token_offsets, char_label_map)
def get_token_output_labels(ner_spans, parent_text):
token_output = get_token_outputs(ner_spans, parent_text)
return [label for token, label in token_output]