wadood commited on
Commit
cd80277
Β·
1 Parent(s): 02128a9

added eval image and explanation

Browse files
Files changed (5) hide show
  1. README.md +1 -1
  2. app.py +27 -7
  3. assets/eval_fnc_viz.png +0 -0
  4. constants.py +19 -0
  5. span_dataclass_converters.py +9 -0
README.md CHANGED
@@ -1,7 +1,7 @@
1
  ---
2
  title: "Evaluating NER Evaluation Metrics!"
3
  emoji: πŸ€—
4
- colorFrom: yellow
5
  colorTo: yellow
6
  sdk: streamlit
7
  sdk_version: "1.36.0"
 
1
  ---
2
  title: "Evaluating NER Evaluation Metrics!"
3
  emoji: πŸ€—
4
+ colorFrom: blue
5
  colorTo: yellow
6
  sdk: streamlit
7
  sdk_version: "1.36.0"
app.py CHANGED
@@ -5,7 +5,14 @@ import streamlit as st
5
  from annotated_text.util import get_annotated_html
6
  from streamlit_annotation_tools import text_labeler
7
 
8
- from constants import PREDICTION_ADDITION_INSTRUCTION
 
 
 
 
 
 
 
9
  from evaluation_metrics import EVALUATION_METRICS
10
  from predefined_example import EXAMPLES
11
  from span_dataclass_converters import (
@@ -28,15 +35,28 @@ def get_examples_attributes(selected_example):
28
 
29
  if __name__ == "__main__":
30
  st.set_page_config(layout="wide")
31
- st.title("πŸ“ˆ NER Metrics Comparison βš–οΈ")
32
 
33
- st.write(
34
- "Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics."
35
- )
36
  explanation_tab, comparision_tab = st.tabs(["πŸ“™ Explanation", "βš–οΈ Comparision"])
37
 
38
  with explanation_tab:
39
- st.write("This is the place holder for explanation of all the metrics")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
  with comparision_tab:
42
  # with st.container():
@@ -78,7 +98,7 @@ if __name__ == "__main__":
78
  st.subheader("Adding predictions")
79
  st.markdown(PREDICTION_ADDITION_INSTRUCTION)
80
  st.write(
81
- "Note: Only the spans of the selected label name is shown at a given instance.",
82
  )
83
  labels = text_labeler(text, gt_labels)
84
  st.json(labels, expanded=False)
 
5
  from annotated_text.util import get_annotated_html
6
  from streamlit_annotation_tools import text_labeler
7
 
8
+ from constants import (
9
+ APP_INTRO,
10
+ APP_TITLE,
11
+ EVAL_FUNCTION_INTRO,
12
+ EVAL_FUNCTION_PROPERTIES,
13
+ NER_TASK_EXPLAINER,
14
+ PREDICTION_ADDITION_INSTRUCTION,
15
+ )
16
  from evaluation_metrics import EVALUATION_METRICS
17
  from predefined_example import EXAMPLES
18
  from span_dataclass_converters import (
 
35
 
36
  if __name__ == "__main__":
37
  st.set_page_config(layout="wide")
38
+ st.title(APP_TITLE)
39
 
40
+ st.write(APP_INTRO)
 
 
41
  explanation_tab, comparision_tab = st.tabs(["πŸ“™ Explanation", "βš–οΈ Comparision"])
42
 
43
  with explanation_tab:
44
+ st.write(EVAL_FUNCTION_INTRO)
45
+ st.image("assets/eval_fnc_viz.png", caption="Evaluation Function Flow")
46
+ st.markdown(EVAL_FUNCTION_PROPERTIES)
47
+ st.markdown(NER_TASK_EXPLAINER)
48
+ st.subheader("Evaluation Metrics")
49
+ metric_names = "\n".join(
50
+ [
51
+ f"{index+1}. " + evaluation_metric.name
52
+ for index, evaluation_metric in enumerate(EVALUATION_METRICS)
53
+ ]
54
+ )
55
+ st.markdown(
56
+ "The different evaluation metrics we have for the NER task are\n"
57
+ "\n"
58
+ f"{metric_names}"
59
+ )
60
 
61
  with comparision_tab:
62
  # with st.container():
 
98
  st.subheader("Adding predictions")
99
  st.markdown(PREDICTION_ADDITION_INSTRUCTION)
100
  st.write(
101
+ "Note: Only the spans of the selected label name are shown at a given instance. Click on the label to see the corresponding spans. (or view the json below)",
102
  )
103
  labels = text_labeler(text, gt_labels)
104
  st.json(labels, expanded=False)
assets/eval_fnc_viz.png ADDED
constants.py CHANGED
@@ -1,3 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  PREDICTION_ADDITION_INSTRUCTION = """
2
  Add predictions to the list of predictions on which the evaluation metric will be caculated.
3
  - Select the entity type/label name and then highlight the span in the text below.
 
1
+ APP_TITLE = "πŸ“ NER Metrics Comparison βš–οΈ"
2
+
3
+ APP_INTRO = "The NER task is performed over a piece of text and involves recognition of entities belonging to a desired entity set and classifying them. The various metrics are explained in the explanation tab. Once you go through them, head to the comparision tab to test out some examples."
4
+
5
+
6
+ ### EXPLANATION TAB ###
7
+
8
+ EVAL_FUNCTION_INTRO = "An evaluation function tells us how well a model is performing. The basic working of any evaluation function involves comparing the model's output with the ground truth to give a score of correctness."
9
+ EVAL_FUNCTION_PROPERTIES = """
10
+ Some basic properties of an evaluation function are -
11
+ 1. Give an output score equivalent to the upper bound when the prediction is completely correct(in some tasks, multiple variations of a predictions can be considered correct)
12
+ 2. Give an output score equivalent to the lower bound when the prediction is completely wrong.
13
+ 3. GIve an output score between upper and lower bound in other cases, corresponding to the degree of correctness.
14
+ """
15
+ NER_TASK_EXPLAINER = """
16
+ The output of the NER task can be represented in either token format or span format.
17
+ """
18
+ ### COMPARISION TAB ###
19
+
20
  PREDICTION_ADDITION_INSTRUCTION = """
21
  Add predictions to the list of predictions on which the evaluation metric will be caculated.
22
  - Select the entity type/label name and then highlight the span in the text below.
span_dataclass_converters.py CHANGED
@@ -1,3 +1,12 @@
 
 
 
 
 
 
 
 
 
1
  def get_ner_spans_from_annotations(annotated_labels):
2
  spans = []
3
  for entity_type, spans_list in annotated_labels.items():
 
1
+ """
2
+ There are 4 data formats for spans
3
+ 1. annotations - this is what we obtain from the text_annotator, the format can be seen in the predefined_examples, gt_labels
4
+ 2. higlight_spans - this is the format used by the highlighter to return the highlighted html text. This is a list of string/tuples("string", "label", color)
5
+ 3. ner_spans - this is the standard format used for representing ner_spans, it is a dict of {"start":int, "end":int, "label":str, "span_text":str}
6
+ 4. Token level output - this is delt with in the token_level_output file, this is either a list of tuples with [(token, label)] or just a list of [label, label]
7
+ """
8
+
9
+
10
  def get_ner_spans_from_annotations(annotated_labels):
11
  spans = []
12
  for entity_type, spans_list in annotated_labels.items():