import pandas as pd import streamlit as st from annotated_text import annotated_text from annotated_text.util import get_annotated_html from streamlit_annotation_tools import text_labeler from evaluation_metrics import EVALUATION_METRICS from predefined_example import EXAMPLES from span_dataclass_converters import ( get_highlight_spans_from_ner_spans, get_ner_spans_from_annotations, ) @st.cache_resource def get_examples_attributes(selected_example): "Return example attributes so that they are not refreshed on every interaction" return ( selected_example.text, selected_example.gt_labels, selected_example.gt_spans, selected_example.predictions, selected_example.tags, ) if __name__ == "__main__": st.set_page_config(layout="wide") st.title("NER Metrics Comparison") st.write( "Evaluation for the NER task requires a ground truth and a prediction that will be evaluated. The ground truth is shown below, add predictions in the next section to compare the evaluation metrics." ) # with st.container(): st.subheader("Ground Truth") # , divider='rainbow') selected_example = st.selectbox( "Select an example text from the drop down below", [example for example in EXAMPLES], format_func=lambda ex: ex.text, ) text, gt_labels, gt_spans, predictions, tags = get_examples_attributes( selected_example ) annotated_text( get_highlight_spans_from_ner_spans( get_ner_spans_from_annotations(gt_labels), text ) ) annotated_predictions = [ get_annotated_html(get_highlight_spans_from_ner_spans(ner_span, text)) for ner_span in predictions ] predictions_df = pd.DataFrame( { # "ID": [f"Prediction_{index}" for index in range(len(predictions))], "Prediction": annotated_predictions, "ner_spans": predictions, }, index=[f"Prediction_{index}" for index in range(len(predictions))], ) st.subheader("Predictions") # , divider='rainbow') with st.expander("Click to Add Predictions"): st.subheader("Adding predictions") st.markdown( """ Add predictions to the list of predictions on which the evaluation metric will be caculated. - Select the entity type/label name and then highlight the span in the text below. - To remove a span, double click on the higlighted text. - Once you have your desired prediction, click on the 'Add' button.(The prediction created is shown in a json below) """ ) st.write( "Note: Only the spans of the selected label name is shown at a given instance.", ) labels = text_labeler(text, gt_labels) st.json(labels, expanded=False) # if st.button("Add Prediction"): # labels = text_labeler(text) if st.button("Add!"): spans = get_ner_spans_from_annotations(labels) spans = sorted(spans, key=lambda span: span["start"]) predictions.append(spans) annotated_predictions.append( get_annotated_html(get_highlight_spans_from_ner_spans(spans, text)) ) predictions_df = pd.DataFrame( { # "ID": [f"Prediction_{index}" for index in range(len(predictions))], "Prediction": annotated_predictions, "ner_spans": predictions, }, index=[f"Prediction_{index}" for index in range(len(predictions))], ) print("added") highlighted_predictions_df = predictions_df[["Prediction"]] st.write(highlighted_predictions_df.to_html(escape=False), unsafe_allow_html=True) st.divider() ### EVALUATION METRICS COMPARISION ### st.subheader("Evaluation Metrics Comparision") # , divider='rainbow') st.markdown(""" The different evaluation metrics we have for the NER task are - Span Based Evaluation with Partial Overlap - Token Based Evaluation with Micro Avg - Token Based Evaluation with Macro Avg """) with st.expander("View Predictions Details"): st.write(predictions_df.to_html(escape=False), unsafe_allow_html=True) if st.button("Get Metrics!"): for evaluation_metric in EVALUATION_METRICS: predictions_df[evaluation_metric.name] = predictions_df.ner_spans.apply( lambda ner_spans: evaluation_metric.get_evaluation_metric( # metric_type=evaluation_metric_type, gt_ner_span=gt_spans, pred_ner_span=ner_spans, text=text, tags=tags, ) ) metrics_df = predictions_df.drop(["ner_spans"], axis=1) st.write(metrics_df.to_html(escape=False), unsafe_allow_html=True)