import gradio as gr import requests import io import random import os import time from PIL import Image from deep_translator import GoogleTranslator import json # Project by Nymbo API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 def query(prompt, is_negative=False, steps=30, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7): if prompt == "" or prompt == None: return None key = random.randint(0, 999) API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} prompt = GoogleTranslator(source='my', target='en').translate(prompt) print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key}:\033[0m {prompt}') payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength } response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') return image except Exception as e: print(f"Error when trying to open the image: {e}") return None css = """ #app-container { max-width: 600px; margin-left: auto; margin-right: auto; } """ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app: gr.HTML("

Walone AI Image Stable

") with gr.Column(elem_id="app-container"): with gr.Row(): with gr.Column(elem_id="prompt-container"): with gr.Row(): text_prompt = gr.Textbox(label="Prompt ရေးရန်", placeholder="ဒီနေရာမှာ prompt ရေးပါ", lines=2, elem_id="prompt-text-input") with gr.Row(): with gr.Accordion("အဆင့်မြင့် Settings", open=False): negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") steps = gr.Slider(label="Sampling steps", value=4, minimum=1, maximum=100, step=1) cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1) method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"]) strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) with gr.Row(): text_button = gr.Button("Run", variant='primary', elem_id="gen-button") with gr.Row(): image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery") text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength], outputs=image_output) app.launch(show_api=False, share=True)