import gradio as gr from scholarly import scholarly import openai def process(key, choice, artitle, trans): openai.api_key = str(key) results = [] if choice=='单个生成': search_query = scholarly.search_pubs(str(artitle)) pub = next(search_query) bib = scholarly.bibtex(pub) if trans=='bib': results.append(bib) else: prompt = "请把以下bib格式转为"+str(trans)+"格式:"+str(bib) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] ) print(completion.choices[0].message["content"]) print('-------------') print(completion.choices[0].text) results.append(completion.choices[0].message["content"]) if choice=='批量生成': m_artitle = artitle.split('\n') for i in range(len(m_artitle)): if trans=='bib': results.append(bib) else: prompt = "请把以下bib格式转为"+str(trans)+"格式:"+str(bib) completion = openai.ChatCompletion.create( model="gpt-3.5-turbo", messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] ) results.append(completion.choices[0].message+'\n') return results # 标题 title = "ChatCitation" # 描述 description = '''
论文引用
''' input_c = [ gr.inputs.Textbox(label="输入OpenAI的API-key", default="", type='password'), gr.inputs.Radio(choices=["单个生成", "批量生成"], default="单个生成", label="题目生成(默认单个生成)"), gr.inputs.Textbox( label="输入论文标题(如果为批量则每行一个标题)", default="Transfer learning based plant diseases detection using ResNet50"), gr.inputs.Dropdown( choices=["AMA", "MLA", "APA", "GB/T 7714", "bib"], label="转化的格式(默认bib)", default="APA"), ] demo = gr.Interface(fn=process, inputs=input_c, outputs="text", title=title, description=description) demo.launch()