Spaces:
Runtime error
Runtime error
File size: 4,341 Bytes
d1c980d c9936e1 d1c980d c9936e1 d1c980d 07c2aaa d1c980d 07c2aaa d1c980d 07c2aaa d1c980d 07c2aaa f61d72c d1c980d beede85 5b68135 bc3b2e9 d1c980d 33131e4 d1c980d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
model_path = 'wannaphong/tongyi-model-v1.1-1b-enth'
# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)
# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = [151645] # IDs of tokens where the generation should stop.
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token.
return True
return False
system_role= 'system'
user_role = 'user'
assistant_role = 'assistant'
sft_start_token = "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"
system_prompt= \
'You are an AI assistant named TongYip (ทองหยิบ), created by PyThaiNLP. As an AI assistant, you can answer questions in Thai and English. Your responses should be friendly, unbiased, informative, detailed, and faithful.'
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"
# Function to generate model predictions.
@spaces.GPU()
def predict(message, history):
# 初始化对话历史格式
if history is None:
history = []
# 在历史中添加当前用户输入,临时设置机器人的回复为空
history_transformer_format = history + [[message, ""]]
stop = StopOnTokens()
# 格式化输入为模型需要的格式
messages = (
system_prompt
+ sft_end_token.join([
sft_end_token.join([
f"\n{sft_start_token}{user_role}\n" + item[0],
f"\n{sft_start_token}{assistant_role}\n" + item[1]
]) for item in history_transformer_format
])
)
model_inputs = tokenizer([messages], return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=model_inputs["input_ids"],
attention_mask=model_inputs["attention_mask"],
streamer=streamer,
max_new_tokens=1024,
do_sample=True,
top_p=0.8,
top_k=20,
temperature=0.7,
num_beams=1,
stopping_criteria=StoppingCriteriaList([stop]),
repetition_penalty=1.1,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start() # Starting the generation in a separate thread.
partial_message = ""
for new_token in streamer:
partial_message += new_token
if sft_end_token in partial_message: # Breaking the loop if the stop token is generated.
break
yield partial_message
css = """
full-height {
height: 100%;
}
"""
prompt_examples = [
'How to cook a fish?',
'Cara memanggang ikan',
'วิธีย่างปลา',
'Cách nướng cá'
]
# placeholder = """
# <div style="opacity: 0.5;">
# <img src="https://raw.githubusercontent.com/sail-sg/sailor-llm/main/misc/banner.jpg" style="width:30%;">
# <br>Sailor models are designed to understand and generate text across diverse linguistic landscapes of these SEA regions:
# <br>🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
# </div>
# """
placeholder = ""
chatbot = gr.Chatbot(label='Sailor', placeholder=placeholder)
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
# gr.Markdown("""<center><font size=8>Sailor-Chat Bot⚓</center>""")
gr.Markdown("""<p align="center"><img src="https://github.com/sail-sg/sailor2/raw/main/misc/sailor2_wide_banner.jpg" style="height: 110px"/><p>""")
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)
demo.launch() # Launching the web interface. |