wasmdashai commited on
Commit
3e22085
1 Parent(s): 2f454a6

Update VitsModelSplit/vits_models_only_decoder.py

Browse files
VitsModelSplit/vits_models_only_decoder.py CHANGED
@@ -14,20 +14,68 @@ from .decoder import VitsHifiGan
14
  from .posterior_encoder import VitsPosteriorEncoder
15
  from .discriminator import VitsDiscriminator
16
  from .vits_output import VitsModelOutput, VitsTrainingOutput
17
-
18
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  class Vits_models_only_decoder(VitsPreTrainedModel):
20
-
21
  def __init__(self, config: VitsConfig):
22
  super().__init__(config)
23
-
24
  self.config = config
25
  self.text_encoder = VitsTextEncoder(config)
26
  self.flow = VitsResidualCouplingBlock(config)
27
  self.decoder = VitsHifiGan(config)
28
 
29
-
30
-
31
  if config.use_stochastic_duration_prediction:
32
  self.duration_predictor = VitsStochasticDurationPredictor(config)
33
  else:
@@ -37,188 +85,83 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
37
  self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
38
 
39
  # This is used only for training.
40
- self.posterior_encoder = VitsPosteriorEncoder(config)
41
- self.discriminator = VitsDiscriminator(config)
42
 
43
  # These parameters control the synthesised speech properties
44
  self.speaking_rate = config.speaking_rate
45
  self.noise_scale = config.noise_scale
46
  self.noise_scale_duration = config.noise_scale_duration
47
- self.segment_size = self.config.segment_size // self.config.hop_length
48
 
49
  # Initialize weights and apply final processing
50
  self.post_init()
51
 
 
 
52
 
53
- #....................................
54
-
55
- def monotonic_align_max_path(self,log_likelihoods, mask):
56
- # used for training - awfully slow
57
- # an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
58
- path = torch.zeros_like(log_likelihoods)
59
-
60
- text_length_maxs = mask.sum(1)[:, 0]
61
- latent_length_maxs = mask.sum(2)[:, 0]
62
-
63
- indexes = latent_length_maxs - 1
64
-
65
- max_neg_val = -1e9
66
-
67
- for batch_id in range(len(path)):
68
- index = int(indexes[batch_id].item())
69
- text_length_max = int(text_length_maxs[batch_id].item())
70
- latent_length_max = int(latent_length_maxs[batch_id].item())
71
-
72
- for y in range(text_length_max):
73
- for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
74
- if x == y:
75
- v_cur = max_neg_val
76
- else:
77
- v_cur = log_likelihoods[batch_id, y - 1, x]
78
- if x == 0:
79
- if y == 0:
80
- v_prev = 0.0
81
- else:
82
- v_prev = max_neg_val
83
- else:
84
- v_prev = log_likelihoods[batch_id, y - 1, x - 1]
85
- log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
86
-
87
- for y in range(text_length_max - 1, -1, -1):
88
- path[batch_id, y, index] = 1
89
- if index != 0 and (
90
- index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
91
- ):
92
- index = index - 1
93
- return path
94
-
95
- #....................................
96
-
97
- def slice_segments(self,hidden_states, ids_str, segment_size=4):
98
-
99
- batch_size, channels, _ = hidden_states.shape
100
- # 1d tensor containing the indices to keep
101
- indices = torch.arange(segment_size).to(ids_str.device)
102
- # extend the indices to match the shape of hidden_states
103
- indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
104
- # offset indices with ids_str
105
- indices = indices + ids_str.view(-1, 1, 1)
106
- # gather indices
107
- output = torch.gather(hidden_states, dim=2, index=indices)
108
-
109
- return output
110
-
111
-
112
- #....................................
113
-
114
-
115
- def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
116
-
117
- batch_size, _, seq_len = hidden_states.size()
118
- if sample_lengths is None:
119
- sample_lengths = seq_len
120
- ids_str_max = sample_lengths - segment_size + 1
121
- ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
122
- ret = self.slice_segments(hidden_states, ids_str, segment_size)
123
-
124
- return ret, ids_str
125
-
126
- #....................................
127
-
128
- def resize_speaker_embeddings(
129
  self,
130
- new_num_speakers: int,
131
- speaker_embedding_size: Optional[int] = None,
132
- pad_to_multiple_of: Optional[int] = 2,
133
- ):
134
- if pad_to_multiple_of is not None:
135
- new_num_speakers = ((new_num_speakers + pad_to_multiple_of - 1) // pad_to_multiple_of) * pad_to_multiple_of
136
-
137
- # first, take care of embed_speaker
138
- if self.config.num_speakers <= 1:
139
- if speaker_embedding_size is None:
140
- raise ValueError(
141
- "The current model had no previous speaker embedding, but `speaker_embedding_size` is not specified. Pass `speaker_embedding_size` to this method."
142
- )
143
- # create new embedding layer
144
- new_embeddings = nn.Embedding(
145
- new_num_speakers,
146
- speaker_embedding_size,
147
- device=self.device,
148
- )
149
- # initialize all new embeddings
150
- self._init_weights(new_embeddings)
151
- else:
152
- new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
153
-
154
- self.embed_speaker = new_embeddings
155
-
156
- # then take care of sub-models
157
- self.flow.resize_speaker_embeddings(speaker_embedding_size)
158
- for flow in self.flow.flows:
159
- self._init_weights(flow.wavenet.cond_layer)
160
-
161
- self.decoder.resize_speaker_embedding(speaker_embedding_size)
162
- self._init_weights(self.decoder.cond)
163
-
164
- self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
165
- self._init_weights(self.duration_predictor.cond)
166
-
167
- self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
168
- self._init_weights(self.posterior_encoder.wavenet.cond_layer)
169
-
170
- self.config.num_speakers = new_num_speakers
171
- self.config.speaker_embedding_size = speaker_embedding_size
172
-
173
- #....................................
174
-
175
- def get_input_embeddings(self):
176
- return self.text_encoder.get_input_embeddings()
177
-
178
- #....................................
179
 
180
- def set_input_embeddings(self, value):
181
- self.text_encoder.set_input_embeddings(value)
182
 
183
- #....................................
184
 
185
- def apply_weight_norm(self):
186
- self.decoder.apply_weight_norm()
187
- self.flow.apply_weight_norm()
188
- self.posterior_encoder.apply_weight_norm()
189
 
190
- #....................................
 
191
 
192
- def remove_weight_norm(self):
193
- self.decoder.remove_weight_norm()
194
- self.flow.remove_weight_norm()
195
- self.posterior_encoder.remove_weight_norm()
196
 
197
- #....................................
198
 
199
- def discriminate(self, hidden_states):
200
- return self.discriminator(hidden_states)
 
 
 
 
 
 
 
 
 
201
 
202
- #....................................
 
203
 
204
- def get_encoder(self):
205
- return self.text_encoder
 
 
206
 
207
- #....................................
 
 
 
 
 
 
 
208
 
209
- def _inference_forward(
210
- self,
211
- input_ids: Optional[torch.Tensor] = None,
212
- attention_mask: Optional[torch.Tensor] = None,
213
- speaker_embeddings: Optional[torch.Tensor] = None,
214
- output_attentions: Optional[bool] = None,
215
- output_hidden_states: Optional[bool] = None,
216
- return_dict: Optional[bool] = None,
217
- padding_mask: Optional[torch.Tensor] = None,
218
- ):
219
  text_encoder_output = self.text_encoder(
220
  input_ids=input_ids,
221
- padding_mask=padding_mask,
222
  attention_mask=attention_mask,
223
  output_attentions=output_attentions,
224
  output_hidden_states=output_hidden_states,
@@ -226,8 +169,7 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
226
  )
227
  hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
228
  hidden_states = hidden_states.transpose(1, 2)
229
- input_padding_mask = padding_mask.transpose(1, 2)
230
-
231
  prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
232
  prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
233
 
@@ -246,7 +188,6 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
246
  duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
247
  predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
248
 
249
-
250
  # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
251
  indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
252
  output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
@@ -271,61 +212,18 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
271
 
272
  spectrogram = latents * output_padding_mask
273
  return spectrogram
274
-
275
- def forward(
276
- self,
277
- input_ids: Optional[torch.Tensor] = None,
278
- attention_mask: Optional[torch.Tensor] = None,
279
- speaker_id: Optional[int] = None,
280
- output_attentions: Optional[bool] = None,
281
- output_hidden_states: Optional[bool] = None,
282
- return_dict: Optional[bool] = None,
283
- labels: Optional[torch.FloatTensor] = None,
284
- labels_attention_mask: Optional[torch.Tensor] = None,
285
- monotonic_alignment_function: Optional[Callable] = None,
286
- ) -> Union[Tuple[Any], VitsModelOutput]:
287
-
288
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
289
- output_hidden_states = (
290
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
291
- )
292
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
293
-
294
- monotonic_alignment_function = (
295
- self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
296
- )
297
-
298
- if attention_mask is not None:
299
- input_padding_mask = attention_mask.unsqueeze(-1).float()
300
- else:
301
- input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
302
-
303
- if self.config.num_speakers > 1 and speaker_id is not None:
304
- if isinstance(speaker_id, int):
305
- speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
306
- elif isinstance(speaker_id, (list, tuple, np.ndarray)):
307
- speaker_id = torch.tensor(speaker_id, device=self.device)
308
-
309
- if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
310
- raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
311
- if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
312
- raise ValueError(
313
- f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
314
- )
315
-
316
- speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
317
- else:
318
- speaker_embeddings = None
319
-
320
- # if inference, return inference forward of VitsModel
321
- if labels is None:
322
- return self._inference_forward(
323
- input_ids,
324
- attention_mask,
325
- speaker_embeddings,
326
- output_attentions,
327
- output_hidden_states,
328
- return_dict,
329
- input_padding_mask,
330
- )
331
-
 
14
  from .posterior_encoder import VitsPosteriorEncoder
15
  from .discriminator import VitsDiscriminator
16
  from .vits_output import VitsModelOutput, VitsTrainingOutput
17
+ _CONFIG_FOR_DOC = "VitsConfig"
18
+
19
+ VITS_START_DOCSTRING = r"""
20
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
21
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
22
+ etc.)
23
+
24
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
25
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
26
+ and behavior.
27
+
28
+ Parameters:
29
+ config ([`VitsConfig`]):
30
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
31
+ load the weights associated with the model, only the configuration. Check out the
32
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
33
+ """
34
+
35
+
36
+ VITS_INPUTS_DOCSTRING = r"""
37
+ Args:
38
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
39
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
40
+ it.
41
+
42
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
43
+ [`PreTrainedTokenizer.__call__`] for details.
44
+
45
+ [What are input IDs?](../glossary#input-ids)
46
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
47
+ Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
48
+ 1]`:
49
+
50
+ - 1 for tokens that are **not masked**,
51
+ - 0 for tokens that are **masked**.
52
+
53
+ [What are attention masks?](../glossary#attention-mask)
54
+ speaker_id (`int`, *optional*):
55
+ Which speaker embedding to use. Only used for multispeaker models.
56
+ output_attentions (`bool`, *optional*):
57
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
58
+ tensors for more detail.
59
+ output_hidden_states (`bool`, *optional*):
60
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
61
+ more detail.
62
+ return_dict (`bool`, *optional*):
63
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
64
+ """
65
+
66
+
67
+ @add_start_docstrings(
68
+ "The complete VITS model, for text-to-speech synthesis.",
69
+ VITS_START_DOCSTRING,
70
+ )
71
  class Vits_models_only_decoder(VitsPreTrainedModel):
 
72
  def __init__(self, config: VitsConfig):
73
  super().__init__(config)
 
74
  self.config = config
75
  self.text_encoder = VitsTextEncoder(config)
76
  self.flow = VitsResidualCouplingBlock(config)
77
  self.decoder = VitsHifiGan(config)
78
 
 
 
79
  if config.use_stochastic_duration_prediction:
80
  self.duration_predictor = VitsStochasticDurationPredictor(config)
81
  else:
 
85
  self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
86
 
87
  # This is used only for training.
88
+ # self.posterior_encoder = VitsPosteriorEncoder(config)
 
89
 
90
  # These parameters control the synthesised speech properties
91
  self.speaking_rate = config.speaking_rate
92
  self.noise_scale = config.noise_scale
93
  self.noise_scale_duration = config.noise_scale_duration
 
94
 
95
  # Initialize weights and apply final processing
96
  self.post_init()
97
 
98
+ def get_encoder(self):
99
+ return self.text_encoder
100
 
101
+ @add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING)
102
+ @replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC)
103
+ def forward(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104
  self,
105
+ input_ids: Optional[torch.Tensor] = None,
106
+ attention_mask: Optional[torch.Tensor] = None,
107
+ speaker_id: Optional[int] = None,
108
+ output_attentions: Optional[bool] = None,
109
+ output_hidden_states: Optional[bool] = None,
110
+ return_dict: Optional[bool] = None,
111
+ labels: Optional[torch.FloatTensor] = None,
112
+ ) -> Union[Tuple[Any], VitsModelOutput]:
113
+ r"""
114
+ labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*):
115
+ Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
116
+ computation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
117
 
118
+ Returns:
 
119
 
120
+ Example:
121
 
122
+ ```python
123
+ >>> from transformers import VitsTokenizer, VitsModel, set_seed
124
+ >>> import torch
 
125
 
126
+ >>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
127
+ >>> model = VitsModel.from_pretrained("facebook/mms-tts-eng")
128
 
129
+ >>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
 
 
 
130
 
131
+ >>> set_seed(555) # make deterministic
132
 
133
+ >>> with torch.no_grad():
134
+ ... outputs = model(inputs["input_ids"])
135
+ >>> outputs.waveform.shape
136
+ torch.Size([1, 45824])
137
+ ```
138
+ """
139
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
140
+ output_hidden_states = (
141
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
142
+ )
143
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
144
 
145
+ if labels is not None:
146
+ raise NotImplementedError("Training of VITS is not supported yet.")
147
 
148
+ if attention_mask is not None:
149
+ input_padding_mask = attention_mask.unsqueeze(-1).float()
150
+ else:
151
+ input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
152
 
153
+ if self.config.num_speakers > 1 and speaker_id is not None:
154
+ if not 0 <= speaker_id < self.config.num_speakers:
155
+ raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
156
+ if isinstance(speaker_id, int):
157
+ speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
158
+ speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
159
+ else:
160
+ speaker_embeddings = None
161
 
 
 
 
 
 
 
 
 
 
 
162
  text_encoder_output = self.text_encoder(
163
  input_ids=input_ids,
164
+ padding_mask=input_padding_mask,
165
  attention_mask=attention_mask,
166
  output_attentions=output_attentions,
167
  output_hidden_states=output_hidden_states,
 
169
  )
170
  hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
171
  hidden_states = hidden_states.transpose(1, 2)
172
+ input_padding_mask = input_padding_mask.transpose(1, 2)
 
173
  prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
174
  prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
175
 
 
188
  duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
189
  predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
190
 
 
191
  # Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
192
  indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
193
  output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
 
212
 
213
  spectrogram = latents * output_padding_mask
214
  return spectrogram
215
+ # waveform = self.decoder(spectrogram, speaker_embeddings)
216
+ # waveform = waveform.squeeze(1)
217
+ # sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
218
+
219
+ # if not return_dict:
220
+ # outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
221
+ # return outputs
222
+
223
+ # return VitsModelOutput(
224
+ # waveform=waveform,
225
+ # sequence_lengths=sequence_lengths,
226
+ # spectrogram=spectrogram,
227
+ # hidden_states=text_encoder_output.hidden_states,
228
+ # attentions=text_encoder_output.attentions,
229
+ # )