Spaces:
Sleeping
Sleeping
wasmdashai
commited on
Commit
•
3e22085
1
Parent(s):
2f454a6
Update VitsModelSplit/vits_models_only_decoder.py
Browse files
VitsModelSplit/vits_models_only_decoder.py
CHANGED
@@ -14,20 +14,68 @@ from .decoder import VitsHifiGan
|
|
14 |
from .posterior_encoder import VitsPosteriorEncoder
|
15 |
from .discriminator import VitsDiscriminator
|
16 |
from .vits_output import VitsModelOutput, VitsTrainingOutput
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
class Vits_models_only_decoder(VitsPreTrainedModel):
|
20 |
-
|
21 |
def __init__(self, config: VitsConfig):
|
22 |
super().__init__(config)
|
23 |
-
|
24 |
self.config = config
|
25 |
self.text_encoder = VitsTextEncoder(config)
|
26 |
self.flow = VitsResidualCouplingBlock(config)
|
27 |
self.decoder = VitsHifiGan(config)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
if config.use_stochastic_duration_prediction:
|
32 |
self.duration_predictor = VitsStochasticDurationPredictor(config)
|
33 |
else:
|
@@ -37,188 +85,83 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
|
|
37 |
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
|
38 |
|
39 |
# This is used only for training.
|
40 |
-
self.posterior_encoder = VitsPosteriorEncoder(config)
|
41 |
-
self.discriminator = VitsDiscriminator(config)
|
42 |
|
43 |
# These parameters control the synthesised speech properties
|
44 |
self.speaking_rate = config.speaking_rate
|
45 |
self.noise_scale = config.noise_scale
|
46 |
self.noise_scale_duration = config.noise_scale_duration
|
47 |
-
self.segment_size = self.config.segment_size // self.config.hop_length
|
48 |
|
49 |
# Initialize weights and apply final processing
|
50 |
self.post_init()
|
51 |
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
def
|
56 |
-
# used for training - awfully slow
|
57 |
-
# an alternative is proposed in examples/pytorch/text-to-speech/run_vits_finetuning.py
|
58 |
-
path = torch.zeros_like(log_likelihoods)
|
59 |
-
|
60 |
-
text_length_maxs = mask.sum(1)[:, 0]
|
61 |
-
latent_length_maxs = mask.sum(2)[:, 0]
|
62 |
-
|
63 |
-
indexes = latent_length_maxs - 1
|
64 |
-
|
65 |
-
max_neg_val = -1e9
|
66 |
-
|
67 |
-
for batch_id in range(len(path)):
|
68 |
-
index = int(indexes[batch_id].item())
|
69 |
-
text_length_max = int(text_length_maxs[batch_id].item())
|
70 |
-
latent_length_max = int(latent_length_maxs[batch_id].item())
|
71 |
-
|
72 |
-
for y in range(text_length_max):
|
73 |
-
for x in range(max(0, latent_length_max + y - text_length_max), min(latent_length_max, y + 1)):
|
74 |
-
if x == y:
|
75 |
-
v_cur = max_neg_val
|
76 |
-
else:
|
77 |
-
v_cur = log_likelihoods[batch_id, y - 1, x]
|
78 |
-
if x == 0:
|
79 |
-
if y == 0:
|
80 |
-
v_prev = 0.0
|
81 |
-
else:
|
82 |
-
v_prev = max_neg_val
|
83 |
-
else:
|
84 |
-
v_prev = log_likelihoods[batch_id, y - 1, x - 1]
|
85 |
-
log_likelihoods[batch_id, y, x] += max(v_prev, v_cur)
|
86 |
-
|
87 |
-
for y in range(text_length_max - 1, -1, -1):
|
88 |
-
path[batch_id, y, index] = 1
|
89 |
-
if index != 0 and (
|
90 |
-
index == y or log_likelihoods[batch_id, y - 1, index] < log_likelihoods[batch_id, y - 1, index - 1]
|
91 |
-
):
|
92 |
-
index = index - 1
|
93 |
-
return path
|
94 |
-
|
95 |
-
#....................................
|
96 |
-
|
97 |
-
def slice_segments(self,hidden_states, ids_str, segment_size=4):
|
98 |
-
|
99 |
-
batch_size, channels, _ = hidden_states.shape
|
100 |
-
# 1d tensor containing the indices to keep
|
101 |
-
indices = torch.arange(segment_size).to(ids_str.device)
|
102 |
-
# extend the indices to match the shape of hidden_states
|
103 |
-
indices = indices.view(1, 1, -1).expand(batch_size, channels, -1)
|
104 |
-
# offset indices with ids_str
|
105 |
-
indices = indices + ids_str.view(-1, 1, 1)
|
106 |
-
# gather indices
|
107 |
-
output = torch.gather(hidden_states, dim=2, index=indices)
|
108 |
-
|
109 |
-
return output
|
110 |
-
|
111 |
-
|
112 |
-
#....................................
|
113 |
-
|
114 |
-
|
115 |
-
def rand_slice_segments(self,hidden_states, sample_lengths=None, segment_size=4):
|
116 |
-
|
117 |
-
batch_size, _, seq_len = hidden_states.size()
|
118 |
-
if sample_lengths is None:
|
119 |
-
sample_lengths = seq_len
|
120 |
-
ids_str_max = sample_lengths - segment_size + 1
|
121 |
-
ids_str = (torch.rand([batch_size]).to(device=hidden_states.device) * ids_str_max).to(dtype=torch.long)
|
122 |
-
ret = self.slice_segments(hidden_states, ids_str, segment_size)
|
123 |
-
|
124 |
-
return ret, ids_str
|
125 |
-
|
126 |
-
#....................................
|
127 |
-
|
128 |
-
def resize_speaker_embeddings(
|
129 |
self,
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
)
|
143 |
-
# create new embedding layer
|
144 |
-
new_embeddings = nn.Embedding(
|
145 |
-
new_num_speakers,
|
146 |
-
speaker_embedding_size,
|
147 |
-
device=self.device,
|
148 |
-
)
|
149 |
-
# initialize all new embeddings
|
150 |
-
self._init_weights(new_embeddings)
|
151 |
-
else:
|
152 |
-
new_embeddings = self._get_resized_embeddings(self.embed_speaker, new_num_speakers)
|
153 |
-
|
154 |
-
self.embed_speaker = new_embeddings
|
155 |
-
|
156 |
-
# then take care of sub-models
|
157 |
-
self.flow.resize_speaker_embeddings(speaker_embedding_size)
|
158 |
-
for flow in self.flow.flows:
|
159 |
-
self._init_weights(flow.wavenet.cond_layer)
|
160 |
-
|
161 |
-
self.decoder.resize_speaker_embedding(speaker_embedding_size)
|
162 |
-
self._init_weights(self.decoder.cond)
|
163 |
-
|
164 |
-
self.duration_predictor.resize_speaker_embeddings(speaker_embedding_size)
|
165 |
-
self._init_weights(self.duration_predictor.cond)
|
166 |
-
|
167 |
-
self.posterior_encoder.resize_speaker_embeddings(speaker_embedding_size)
|
168 |
-
self._init_weights(self.posterior_encoder.wavenet.cond_layer)
|
169 |
-
|
170 |
-
self.config.num_speakers = new_num_speakers
|
171 |
-
self.config.speaker_embedding_size = speaker_embedding_size
|
172 |
-
|
173 |
-
#....................................
|
174 |
-
|
175 |
-
def get_input_embeddings(self):
|
176 |
-
return self.text_encoder.get_input_embeddings()
|
177 |
-
|
178 |
-
#....................................
|
179 |
|
180 |
-
|
181 |
-
self.text_encoder.set_input_embeddings(value)
|
182 |
|
183 |
-
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
self.posterior_encoder.apply_weight_norm()
|
189 |
|
190 |
-
|
|
|
191 |
|
192 |
-
|
193 |
-
self.decoder.remove_weight_norm()
|
194 |
-
self.flow.remove_weight_norm()
|
195 |
-
self.posterior_encoder.remove_weight_norm()
|
196 |
|
197 |
-
|
198 |
|
199 |
-
|
200 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
|
202 |
-
|
|
|
203 |
|
204 |
-
|
205 |
-
|
|
|
|
|
206 |
|
207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
def _inference_forward(
|
210 |
-
self,
|
211 |
-
input_ids: Optional[torch.Tensor] = None,
|
212 |
-
attention_mask: Optional[torch.Tensor] = None,
|
213 |
-
speaker_embeddings: Optional[torch.Tensor] = None,
|
214 |
-
output_attentions: Optional[bool] = None,
|
215 |
-
output_hidden_states: Optional[bool] = None,
|
216 |
-
return_dict: Optional[bool] = None,
|
217 |
-
padding_mask: Optional[torch.Tensor] = None,
|
218 |
-
):
|
219 |
text_encoder_output = self.text_encoder(
|
220 |
input_ids=input_ids,
|
221 |
-
padding_mask=
|
222 |
attention_mask=attention_mask,
|
223 |
output_attentions=output_attentions,
|
224 |
output_hidden_states=output_hidden_states,
|
@@ -226,8 +169,7 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
|
|
226 |
)
|
227 |
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
228 |
hidden_states = hidden_states.transpose(1, 2)
|
229 |
-
input_padding_mask =
|
230 |
-
|
231 |
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
232 |
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
233 |
|
@@ -246,7 +188,6 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
|
|
246 |
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
247 |
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
248 |
|
249 |
-
|
250 |
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
|
251 |
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
252 |
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
@@ -271,61 +212,18 @@ class Vits_models_only_decoder(VitsPreTrainedModel):
|
|
271 |
|
272 |
spectrogram = latents * output_padding_mask
|
273 |
return spectrogram
|
274 |
-
|
275 |
-
|
276 |
-
self
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
output_hidden_states = (
|
290 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
291 |
-
)
|
292 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
293 |
-
|
294 |
-
monotonic_alignment_function = (
|
295 |
-
self.monotonic_align_max_path if monotonic_alignment_function is None else monotonic_alignment_function
|
296 |
-
)
|
297 |
-
|
298 |
-
if attention_mask is not None:
|
299 |
-
input_padding_mask = attention_mask.unsqueeze(-1).float()
|
300 |
-
else:
|
301 |
-
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
|
302 |
-
|
303 |
-
if self.config.num_speakers > 1 and speaker_id is not None:
|
304 |
-
if isinstance(speaker_id, int):
|
305 |
-
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
|
306 |
-
elif isinstance(speaker_id, (list, tuple, np.ndarray)):
|
307 |
-
speaker_id = torch.tensor(speaker_id, device=self.device)
|
308 |
-
|
309 |
-
if not ((0 <= speaker_id).all() and (speaker_id < self.config.num_speakers).all()).item():
|
310 |
-
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
|
311 |
-
if not (len(speaker_id) == 1 or len(speaker_id == len(input_ids))):
|
312 |
-
raise ValueError(
|
313 |
-
f"You passed {len(speaker_id)} `speaker_id` but you should either pass one speaker id or `batch_size` `speaker_id`."
|
314 |
-
)
|
315 |
-
|
316 |
-
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
|
317 |
-
else:
|
318 |
-
speaker_embeddings = None
|
319 |
-
|
320 |
-
# if inference, return inference forward of VitsModel
|
321 |
-
if labels is None:
|
322 |
-
return self._inference_forward(
|
323 |
-
input_ids,
|
324 |
-
attention_mask,
|
325 |
-
speaker_embeddings,
|
326 |
-
output_attentions,
|
327 |
-
output_hidden_states,
|
328 |
-
return_dict,
|
329 |
-
input_padding_mask,
|
330 |
-
)
|
331 |
-
|
|
|
14 |
from .posterior_encoder import VitsPosteriorEncoder
|
15 |
from .discriminator import VitsDiscriminator
|
16 |
from .vits_output import VitsModelOutput, VitsTrainingOutput
|
17 |
+
_CONFIG_FOR_DOC = "VitsConfig"
|
18 |
+
|
19 |
+
VITS_START_DOCSTRING = r"""
|
20 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
21 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
22 |
+
etc.)
|
23 |
+
|
24 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
25 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
26 |
+
and behavior.
|
27 |
+
|
28 |
+
Parameters:
|
29 |
+
config ([`VitsConfig`]):
|
30 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
31 |
+
load the weights associated with the model, only the configuration. Check out the
|
32 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
33 |
+
"""
|
34 |
+
|
35 |
+
|
36 |
+
VITS_INPUTS_DOCSTRING = r"""
|
37 |
+
Args:
|
38 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
39 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
40 |
+
it.
|
41 |
+
|
42 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
43 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
44 |
+
|
45 |
+
[What are input IDs?](../glossary#input-ids)
|
46 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
47 |
+
Mask to avoid performing convolution and attention on padding token indices. Mask values selected in `[0,
|
48 |
+
1]`:
|
49 |
+
|
50 |
+
- 1 for tokens that are **not masked**,
|
51 |
+
- 0 for tokens that are **masked**.
|
52 |
+
|
53 |
+
[What are attention masks?](../glossary#attention-mask)
|
54 |
+
speaker_id (`int`, *optional*):
|
55 |
+
Which speaker embedding to use. Only used for multispeaker models.
|
56 |
+
output_attentions (`bool`, *optional*):
|
57 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
58 |
+
tensors for more detail.
|
59 |
+
output_hidden_states (`bool`, *optional*):
|
60 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
61 |
+
more detail.
|
62 |
+
return_dict (`bool`, *optional*):
|
63 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
64 |
+
"""
|
65 |
+
|
66 |
+
|
67 |
+
@add_start_docstrings(
|
68 |
+
"The complete VITS model, for text-to-speech synthesis.",
|
69 |
+
VITS_START_DOCSTRING,
|
70 |
+
)
|
71 |
class Vits_models_only_decoder(VitsPreTrainedModel):
|
|
|
72 |
def __init__(self, config: VitsConfig):
|
73 |
super().__init__(config)
|
|
|
74 |
self.config = config
|
75 |
self.text_encoder = VitsTextEncoder(config)
|
76 |
self.flow = VitsResidualCouplingBlock(config)
|
77 |
self.decoder = VitsHifiGan(config)
|
78 |
|
|
|
|
|
79 |
if config.use_stochastic_duration_prediction:
|
80 |
self.duration_predictor = VitsStochasticDurationPredictor(config)
|
81 |
else:
|
|
|
85 |
self.embed_speaker = nn.Embedding(config.num_speakers, config.speaker_embedding_size)
|
86 |
|
87 |
# This is used only for training.
|
88 |
+
# self.posterior_encoder = VitsPosteriorEncoder(config)
|
|
|
89 |
|
90 |
# These parameters control the synthesised speech properties
|
91 |
self.speaking_rate = config.speaking_rate
|
92 |
self.noise_scale = config.noise_scale
|
93 |
self.noise_scale_duration = config.noise_scale_duration
|
|
|
94 |
|
95 |
# Initialize weights and apply final processing
|
96 |
self.post_init()
|
97 |
|
98 |
+
def get_encoder(self):
|
99 |
+
return self.text_encoder
|
100 |
|
101 |
+
@add_start_docstrings_to_model_forward(VITS_INPUTS_DOCSTRING)
|
102 |
+
@replace_return_docstrings(output_type=VitsModelOutput, config_class=_CONFIG_FOR_DOC)
|
103 |
+
def forward(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
self,
|
105 |
+
input_ids: Optional[torch.Tensor] = None,
|
106 |
+
attention_mask: Optional[torch.Tensor] = None,
|
107 |
+
speaker_id: Optional[int] = None,
|
108 |
+
output_attentions: Optional[bool] = None,
|
109 |
+
output_hidden_states: Optional[bool] = None,
|
110 |
+
return_dict: Optional[bool] = None,
|
111 |
+
labels: Optional[torch.FloatTensor] = None,
|
112 |
+
) -> Union[Tuple[Any], VitsModelOutput]:
|
113 |
+
r"""
|
114 |
+
labels (`torch.FloatTensor` of shape `(batch_size, config.spectrogram_bins, sequence_length)`, *optional*):
|
115 |
+
Float values of target spectrogram. Timesteps set to `-100.0` are ignored (masked) for the loss
|
116 |
+
computation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
Returns:
|
|
|
119 |
|
120 |
+
Example:
|
121 |
|
122 |
+
```python
|
123 |
+
>>> from transformers import VitsTokenizer, VitsModel, set_seed
|
124 |
+
>>> import torch
|
|
|
125 |
|
126 |
+
>>> tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-eng")
|
127 |
+
>>> model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
128 |
|
129 |
+
>>> inputs = tokenizer(text="Hello - my dog is cute", return_tensors="pt")
|
|
|
|
|
|
|
130 |
|
131 |
+
>>> set_seed(555) # make deterministic
|
132 |
|
133 |
+
>>> with torch.no_grad():
|
134 |
+
... outputs = model(inputs["input_ids"])
|
135 |
+
>>> outputs.waveform.shape
|
136 |
+
torch.Size([1, 45824])
|
137 |
+
```
|
138 |
+
"""
|
139 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
140 |
+
output_hidden_states = (
|
141 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
142 |
+
)
|
143 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
144 |
|
145 |
+
if labels is not None:
|
146 |
+
raise NotImplementedError("Training of VITS is not supported yet.")
|
147 |
|
148 |
+
if attention_mask is not None:
|
149 |
+
input_padding_mask = attention_mask.unsqueeze(-1).float()
|
150 |
+
else:
|
151 |
+
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).float()
|
152 |
|
153 |
+
if self.config.num_speakers > 1 and speaker_id is not None:
|
154 |
+
if not 0 <= speaker_id < self.config.num_speakers:
|
155 |
+
raise ValueError(f"Set `speaker_id` in the range 0-{self.config.num_speakers - 1}.")
|
156 |
+
if isinstance(speaker_id, int):
|
157 |
+
speaker_id = torch.full(size=(1,), fill_value=speaker_id, device=self.device)
|
158 |
+
speaker_embeddings = self.embed_speaker(speaker_id).unsqueeze(-1)
|
159 |
+
else:
|
160 |
+
speaker_embeddings = None
|
161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
text_encoder_output = self.text_encoder(
|
163 |
input_ids=input_ids,
|
164 |
+
padding_mask=input_padding_mask,
|
165 |
attention_mask=attention_mask,
|
166 |
output_attentions=output_attentions,
|
167 |
output_hidden_states=output_hidden_states,
|
|
|
169 |
)
|
170 |
hidden_states = text_encoder_output[0] if not return_dict else text_encoder_output.last_hidden_state
|
171 |
hidden_states = hidden_states.transpose(1, 2)
|
172 |
+
input_padding_mask = input_padding_mask.transpose(1, 2)
|
|
|
173 |
prior_means = text_encoder_output[1] if not return_dict else text_encoder_output.prior_means
|
174 |
prior_log_variances = text_encoder_output[2] if not return_dict else text_encoder_output.prior_log_variances
|
175 |
|
|
|
188 |
duration = torch.ceil(torch.exp(log_duration) * input_padding_mask * length_scale)
|
189 |
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
190 |
|
|
|
191 |
# Create a padding mask for the output lengths of shape (batch, 1, max_output_length)
|
192 |
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
193 |
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
|
|
212 |
|
213 |
spectrogram = latents * output_padding_mask
|
214 |
return spectrogram
|
215 |
+
# waveform = self.decoder(spectrogram, speaker_embeddings)
|
216 |
+
# waveform = waveform.squeeze(1)
|
217 |
+
# sequence_lengths = predicted_lengths * np.prod(self.config.upsample_rates)
|
218 |
+
|
219 |
+
# if not return_dict:
|
220 |
+
# outputs = (waveform, sequence_lengths, spectrogram) + text_encoder_output[3:]
|
221 |
+
# return outputs
|
222 |
+
|
223 |
+
# return VitsModelOutput(
|
224 |
+
# waveform=waveform,
|
225 |
+
# sequence_lengths=sequence_lengths,
|
226 |
+
# spectrogram=spectrogram,
|
227 |
+
# hidden_states=text_encoder_output.hidden_states,
|
228 |
+
# attentions=text_encoder_output.attentions,
|
229 |
+
# )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|