#!/usr/bin/env python
# -*- coding: utf-8 -*-
# pylint: disable=C0301
"""
HuggingFace Spaces demo of the `TextGraphs` library using Streamlit
see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md
"""
import pathlib
import time
import typing
import matplotlib.pyplot as plt # pylint: disable=E0401
import pandas as pd # pylint: disable=E0401
import pyvis # pylint: disable=E0401
import spacy # pylint: disable=E0401
import streamlit as st # pylint: disable=E0401
import textgraphs
if __name__ == "__main__":
# default text input
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and intellectual originally from Germany, the son of Dietrich Herzog.
"""
# store the initial value of widgets in session state
if "visibility" not in st.session_state:
st.session_state.visibility = "visible"
st.session_state.disabled = False
with st.container():
st.title("demo: TextGraphs + LLMs to construct a 'lemma graph'")
st.markdown(
"""
docs:
DOI: 10.5281/zenodo.10431783
""",
unsafe_allow_html = True,
)
# collect input + config
st.subheader("configure", divider = "rainbow")
text_input: str = st.text_area(
"Source Text:",
value = SRC_TEXT.strip(),
)
llm_ner = st.checkbox(
"enhance spaCy NER using: SpanMarker",
value = False,
)
link_ents = st.checkbox(
"link entities using: DBPedia Spotlight, WikiMedia API",
value = False,
)
infer_rel = st.checkbox(
"infer relations using: REBEL, OpenNRE, qwikidata",
value = False,
)
if text_input or llm_ner or link_ents or infer_rel:
## parse the document
st.subheader("parse the raw text", divider = "rainbow")
start_time: float = time.time()
# generally it is fine to use factory defaults,
# although let's illustrate these settings here
infer_rels: list = []
if infer_rel:
with st.spinner(text = "load rel models..."):
infer_rels = [
textgraphs.InferRel_OpenNRE(
model = textgraphs.OPENNRE_MODEL,
max_skip = textgraphs.MAX_SKIP,
min_prob = textgraphs.OPENNRE_MIN_PROB,
),
textgraphs.InferRel_Rebel(
lang = "en_XX",
mrebel_model = textgraphs.MREBEL_MODEL,
),
]
ner: typing.Optional[ textgraphs.Component ] = None
if llm_ner:
ner = textgraphs.NERSpanMarker(
ner_model = textgraphs.NER_MODEL,
)
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
spacy_model = textgraphs.SPACY_MODEL,
ner = ner,
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
min_alias = textgraphs.DBPEDIA_MIN_ALIAS,
min_similarity = textgraphs.DBPEDIA_MIN_SIM,
),
infer_rels = infer_rels,
),
)
duration: float = round(time.time() - start_time, 3)
st.write(f"set up: {round(duration, 3)} sec")
with st.spinner(text = "parse text..."):
start_time = time.time()
pipe: textgraphs.Pipeline = tg.create_pipeline(
text_input.strip(),
)
duration = round(time.time() - start_time, 3)
st.write(f"parse text: {round(duration, 3)} sec, {len(text_input)} characters")
# render the entity html
ent_html: str = spacy.displacy.render(
pipe.ner_doc,
style = "ent",
jupyter = False,
)
st.markdown(
ent_html,
unsafe_allow_html = True,
)
# generate dependencies as an SVG
dep_svg = spacy.displacy.render(
pipe.ner_doc,
style = "dep",
jupyter = False,
)
st.image(
dep_svg,
width = 800,
use_column_width = "never",
)
## collect graph elements from the parse
st.subheader("construct the base level of the lemma graph", divider = "rainbow")
start_time = time.time()
tg.collect_graph_elements(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"collect elements: {round(duration, 3)} sec, {len(tg.nodes)} nodes, {len(tg.edges)} edges")
## perform entity linking
if link_ents:
st.subheader("extract entities and perform entity linking", divider = "rainbow")
with st.spinner(text = "entity linking..."):
start_time = time.time()
tg.perform_entity_linking(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"entity linking: {round(duration, 3)} sec")
## perform relation extraction
if infer_rel:
st.subheader("infer relations", divider = "rainbow")
st.write("NB: this part runs an order of magnitude more *slooooooowly* on HF Spaces")
with st.spinner(text = "relation extraction..."):
start_time = time.time()
# NB: run this iteratively since Streamlit on HF Spaces is *sloooooooooow*
inferred_edges: list = tg.infer_relations(
pipe,
debug = False,
)
duration = round(time.time() - start_time, 3)
n_list: list = list(tg.nodes.values())
df_rel: pd.DataFrame = pd.DataFrame.from_dict([
{
"src": n_list[edge.src_node].text,
"dst": n_list[edge.dst_node].text,
"rel": edge.rel,
"weight": edge.prob,
}
for edge in inferred_edges
])
st.dataframe(df_rel)
st.write(f"relation extraction: {round(duration, 3)} sec, {len(df_rel)} edges")
## construct the _lemma graph_
start_time = time.time()
tg.construct_lemma_graph(
debug = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"construct graph: {round(duration, 3)} sec")
## rank the extracted phrases
st.subheader("rank the extracted phrases", divider = "rainbow")
start_time = time.time()
tg.calc_phrase_ranks(
pr_alpha = textgraphs.PAGERANK_ALPHA,
debug = False,
)
df_ent: pd.DataFrame = tg.get_phrases_as_df()
duration = round(time.time() - start_time, 3)
st.write(f"extract: {round(duration, 3)} sec, {len(df_ent)} entities")
st.dataframe(df_ent)
## generate a word cloud
st.subheader("generate a word cloud", divider = "rainbow")
render: textgraphs.RenderPyVis = tg.create_render()
wordcloud = render.generate_wordcloud()
st.image(
wordcloud.to_image(),
width = 700,
use_column_width = "never",
)
## visualize the lemma graph
st.subheader("visualize the lemma graph", divider = "rainbow")
st.markdown(
"""
what you get at this stage is a relatively noisy,
low-level detailed graph of the parsed text
the most interesting nodes will probably be either
subjects (`nsubj`) or direct objects (`pobj`)
"""
)
pv_graph: pyvis.network.Network = render.render_lemma_graph(
debug = False,
)
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
py_html: pathlib.Path = pathlib.Path("vis.html")
pv_graph.save_graph(py_html.as_posix())
st.components.v1.html(
py_html.read_text(encoding = "utf-8"),
height = render.HTML_HEIGHT_WITH_CONTROLS,
scrolling = False,
)
## cluster the communities
st.subheader("cluster the communities", divider = "rainbow")
st.markdown(
"""
About this clustering...
In the tutorial
"How to Convert Any Text Into a Graph of Concepts",
Rahul Nayak uses the
girvan-newman
algorithm to split the graph into communities, then clusters on those communities.
His approach works well for unsupervised clustering of key phrases which have been extracted from a collection of many documents.
While Nayak was working with entities extracted from "chunks" of text, not with a text graph per se, this approach is useful for identifying network motifs which can be condensed, e.g., to extract a semantic graph overlay as an abstraction layer atop a lemma graph.
""",
unsafe_allow_html = True,
)
spring_dist_val = st.slider(
"spring distance for NetworkX clusters",
min_value = 0.0,
max_value = 10.0,
value = 1.2,
)
if spring_dist_val:
start_time = time.time()
fig, ax = plt.subplots()
comm_map: dict = render.draw_communities(
spring_distance = spring_dist_val,
)
st.pyplot(fig)
duration = round(time.time() - start_time, 3)
st.write(f"cluster: {round(duration, 3)} sec, {max(comm_map.values()) + 1} clusters")
## transform a graph of relations
st.subheader("transform as a graph of relations", divider = "rainbow")
st.markdown(
"""
Using the topological transform given in `lee2023ingram`, construct a
_graph of relations_ for enhancing graph inference.
What does this transform provide?
By using a graph of relations dual representation of our graph data, first and foremost we obtain a more compact representation of the relations in the graph, and means of making inferences (e.g., link prediction) where there is substantially more invariance in the training data.
Also recognize that for a parse graph of a paragraph in the English language, the most interesting nodes will probably be either subjects (nsubj
) or direct objects (pobj
). Here in the graph of relations we can see illustrated how the important details from entity linking tend to cluster near either nsubj
or pobj
entities, connected through punctuation. This aspect is not as readily observed in the earlier visualization of the lemma graph.
""",
unsafe_allow_html = True,
)
start_time = time.time()
gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(tg)
gor.seeds()
gor.construct_gor()
scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores()
pv_graph = gor.render_gor_pyvis(scores)
pv_graph.force_atlas_2based(
gravity = -38,
central_gravity = 0.01,
spring_length = 231,
spring_strength = 0.7,
damping = 0.8,
overlap = 0,
)
pv_graph.show_buttons(filter_ = [ "physics" ])
pv_graph.toggle_physics(True)
py_html = pathlib.Path("gor.html")
pv_graph.save_graph(py_html.as_posix())
st.components.v1.html(
py_html.read_text(encoding = "utf-8"),
height = render.HTML_HEIGHT_WITH_CONTROLS,
scrolling = False,
)
duration = round(time.time() - start_time, 3)
st.write(f"transform: {round(duration, 3)} sec, {len(gor.rel_list)} relations")
## download lemma graph
st.subheader("download the results", divider = "rainbow")
st.markdown(
"""
Download a serialized lemma graph in multiple formats:
""",
unsafe_allow_html = True,
)
col1, col2, col3 = st.columns(3)
with col1:
st.download_button(
label = "download node-link",
data = tg.dump_lemma_graph(),
file_name = "lemma_graph.json",
mime = "application/json",
)
st.markdown(
"""
node-link: JSON data suitable for import to Neo4j, NetworkX, etc.
""",
unsafe_allow_html = True,
)
with col2:
st.download_button(
label = "download RDF",
data = tg.export_rdf(),
file_name = "lemma_graph.ttl",
mime = "text/turtle",
)
st.markdown(
"""
Turtle/N3: W3C semantic graph representation, based on RDF, OWL, SKOS, etc.
""",
unsafe_allow_html = True,
)
with col3:
st.download_button(
label = "download KùzuDB",
data = tg.export_kuzu(zip_name = "lemma_graph.zip"),
file_name = "lemma.zip",
mime = "application/x-zip-compressed",
)
st.markdown(
"""
openCypher: ZIP file of a labeled property graph in KùzuDB
""",
unsafe_allow_html = True,
)
## WIP
st.divider()
st.write("(WIP)")
thanks: str = """
This demo has completed, and thank you for running a Derwen space!
"""
st.toast(
thanks,
icon ="😍",
)