#!/usr/bin/env python # -*- coding: utf-8 -*- # pylint: disable=C0301 """ HuggingFace Spaces demo of the `TextGraphs` library using Streamlit see copyright/license https://huggingface.co/spaces/DerwenAI/textgraphs/blob/main/README.md """ import pathlib import time import typing import matplotlib.pyplot as plt # pylint: disable=E0401 import pandas as pd # pylint: disable=E0401 import pyvis # pylint: disable=E0401 import spacy # pylint: disable=E0401 import streamlit as st # pylint: disable=E0401 import textgraphs if __name__ == "__main__": # default text input SRC_TEXT: str = """ Werner Herzog is a remarkable filmmaker and intellectual originally from Germany, the son of Dietrich Herzog. """ # store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False with st.container(): st.title("demo: TextGraphs + LLMs to construct a 'lemma graph'") st.markdown( """ docs:     DOI: 10.5281/zenodo.10431783 """, unsafe_allow_html = True, ) # collect input + config st.subheader("configure", divider = "rainbow") text_input: str = st.text_area( "Source Text:", value = SRC_TEXT.strip(), ) llm_ner = st.checkbox( "enhance spaCy NER using: SpanMarker", value = False, ) link_ents = st.checkbox( "link entities using: DBPedia Spotlight, WikiMedia API", value = False, ) infer_rel = st.checkbox( "infer relations using: REBEL, OpenNRE, qwikidata", value = False, ) if text_input or llm_ner or link_ents or infer_rel: ## parse the document st.subheader("parse the raw text", divider = "rainbow") start_time: float = time.time() # generally it is fine to use factory defaults, # although let's illustrate these settings here infer_rels: list = [] if infer_rel: with st.spinner(text = "load rel models..."): infer_rels = [ textgraphs.InferRel_OpenNRE( model = textgraphs.OPENNRE_MODEL, max_skip = textgraphs.MAX_SKIP, min_prob = textgraphs.OPENNRE_MIN_PROB, ), textgraphs.InferRel_Rebel( lang = "en_XX", mrebel_model = textgraphs.MREBEL_MODEL, ), ] ner: typing.Optional[ textgraphs.Component ] = None if llm_ner: ner = textgraphs.NERSpanMarker( ner_model = textgraphs.NER_MODEL, ) tg: textgraphs.TextGraphs = textgraphs.TextGraphs( factory = textgraphs.PipelineFactory( spacy_model = textgraphs.SPACY_MODEL, ner = ner, kg = textgraphs.KGWikiMedia( spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API, dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API, dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API, wikidata_api = textgraphs.WIKIDATA_API, min_alias = textgraphs.DBPEDIA_MIN_ALIAS, min_similarity = textgraphs.DBPEDIA_MIN_SIM, ), infer_rels = infer_rels, ), ) duration: float = round(time.time() - start_time, 3) st.write(f"set up: {round(duration, 3)} sec") with st.spinner(text = "parse text..."): start_time = time.time() pipe: textgraphs.Pipeline = tg.create_pipeline( text_input.strip(), ) duration = round(time.time() - start_time, 3) st.write(f"parse text: {round(duration, 3)} sec, {len(text_input)} characters") # render the entity html ent_html: str = spacy.displacy.render( pipe.ner_doc, style = "ent", jupyter = False, ) st.markdown( ent_html, unsafe_allow_html = True, ) # generate dependencies as an SVG dep_svg = spacy.displacy.render( pipe.ner_doc, style = "dep", jupyter = False, ) st.image( dep_svg, width = 800, use_column_width = "never", ) ## collect graph elements from the parse st.subheader("construct the base level of the lemma graph", divider = "rainbow") start_time = time.time() tg.collect_graph_elements( pipe, debug = False, ) duration = round(time.time() - start_time, 3) st.write(f"collect elements: {round(duration, 3)} sec, {len(tg.nodes)} nodes, {len(tg.edges)} edges") ## perform entity linking if link_ents: st.subheader("extract entities and perform entity linking", divider = "rainbow") with st.spinner(text = "entity linking..."): start_time = time.time() tg.perform_entity_linking( pipe, debug = False, ) duration = round(time.time() - start_time, 3) st.write(f"entity linking: {round(duration, 3)} sec") ## perform relation extraction if infer_rel: st.subheader("infer relations", divider = "rainbow") st.write("NB: this part runs an order of magnitude more *slooooooowly* on HF Spaces") with st.spinner(text = "relation extraction..."): start_time = time.time() # NB: run this iteratively since Streamlit on HF Spaces is *sloooooooooow* inferred_edges: list = tg.infer_relations( pipe, debug = False, ) duration = round(time.time() - start_time, 3) n_list: list = list(tg.nodes.values()) df_rel: pd.DataFrame = pd.DataFrame.from_dict([ { "src": n_list[edge.src_node].text, "dst": n_list[edge.dst_node].text, "rel": edge.rel, "weight": edge.prob, } for edge in inferred_edges ]) st.dataframe(df_rel) st.write(f"relation extraction: {round(duration, 3)} sec, {len(df_rel)} edges") ## construct the _lemma graph_ start_time = time.time() tg.construct_lemma_graph( debug = False, ) duration = round(time.time() - start_time, 3) st.write(f"construct graph: {round(duration, 3)} sec") ## rank the extracted phrases st.subheader("rank the extracted phrases", divider = "rainbow") start_time = time.time() tg.calc_phrase_ranks( pr_alpha = textgraphs.PAGERANK_ALPHA, debug = False, ) df_ent: pd.DataFrame = tg.get_phrases_as_df() duration = round(time.time() - start_time, 3) st.write(f"extract: {round(duration, 3)} sec, {len(df_ent)} entities") st.dataframe(df_ent) ## generate a word cloud st.subheader("generate a word cloud", divider = "rainbow") render: textgraphs.RenderPyVis = tg.create_render() wordcloud = render.generate_wordcloud() st.image( wordcloud.to_image(), width = 700, use_column_width = "never", ) ## visualize the lemma graph st.subheader("visualize the lemma graph", divider = "rainbow") st.markdown( """ what you get at this stage is a relatively noisy, low-level detailed graph of the parsed text the most interesting nodes will probably be either subjects (`nsubj`) or direct objects (`pobj`) """ ) pv_graph: pyvis.network.Network = render.render_lemma_graph( debug = False, ) pv_graph.force_atlas_2based( gravity = -38, central_gravity = 0.01, spring_length = 231, spring_strength = 0.7, damping = 0.8, overlap = 0, ) pv_graph.show_buttons(filter_ = [ "physics" ]) pv_graph.toggle_physics(True) py_html: pathlib.Path = pathlib.Path("vis.html") pv_graph.save_graph(py_html.as_posix()) st.components.v1.html( py_html.read_text(encoding = "utf-8"), height = render.HTML_HEIGHT_WITH_CONTROLS, scrolling = False, ) ## cluster the communities st.subheader("cluster the communities", divider = "rainbow") st.markdown( """
About this clustering...

In the tutorial "How to Convert Any Text Into a Graph of Concepts", Rahul Nayak uses the girvan-newman algorithm to split the graph into communities, then clusters on those communities. His approach works well for unsupervised clustering of key phrases which have been extracted from a collection of many documents.

While Nayak was working with entities extracted from "chunks" of text, not with a text graph per se, this approach is useful for identifying network motifs which can be condensed, e.g., to extract a semantic graph overlay as an abstraction layer atop a lemma graph.


""", unsafe_allow_html = True, ) spring_dist_val = st.slider( "spring distance for NetworkX clusters", min_value = 0.0, max_value = 10.0, value = 1.2, ) if spring_dist_val: start_time = time.time() fig, ax = plt.subplots() comm_map: dict = render.draw_communities( spring_distance = spring_dist_val, ) st.pyplot(fig) duration = round(time.time() - start_time, 3) st.write(f"cluster: {round(duration, 3)} sec, {max(comm_map.values()) + 1} clusters") ## transform a graph of relations st.subheader("transform as a graph of relations", divider = "rainbow") st.markdown( """ Using the topological transform given in `lee2023ingram`, construct a _graph of relations_ for enhancing graph inference.
What does this transform provide?

By using a graph of relations dual representation of our graph data, first and foremost we obtain a more compact representation of the relations in the graph, and means of making inferences (e.g., link prediction) where there is substantially more invariance in the training data.

Also recognize that for a parse graph of a paragraph in the English language, the most interesting nodes will probably be either subjects (nsubj) or direct objects (pobj). Here in the graph of relations we can see illustrated how the important details from entity linking tend to cluster near either nsubj or pobj entities, connected through punctuation. This aspect is not as readily observed in the earlier visualization of the lemma graph.

""", unsafe_allow_html = True, ) start_time = time.time() gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(tg) gor.seeds() gor.construct_gor() scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores() pv_graph = gor.render_gor_pyvis(scores) pv_graph.force_atlas_2based( gravity = -38, central_gravity = 0.01, spring_length = 231, spring_strength = 0.7, damping = 0.8, overlap = 0, ) pv_graph.show_buttons(filter_ = [ "physics" ]) pv_graph.toggle_physics(True) py_html = pathlib.Path("gor.html") pv_graph.save_graph(py_html.as_posix()) st.components.v1.html( py_html.read_text(encoding = "utf-8"), height = render.HTML_HEIGHT_WITH_CONTROLS, scrolling = False, ) duration = round(time.time() - start_time, 3) st.write(f"transform: {round(duration, 3)} sec, {len(gor.rel_list)} relations") ## download lemma graph st.subheader("download the results", divider = "rainbow") st.markdown( """ Download a serialized lemma graph in multiple formats: """, unsafe_allow_html = True, ) col1, col2, col3 = st.columns(3) with col1: st.download_button( label = "download node-link", data = tg.dump_lemma_graph(), file_name = "lemma_graph.json", mime = "application/json", ) st.markdown( """ node-link: JSON data suitable for import to Neo4j, NetworkX, etc. """, unsafe_allow_html = True, ) with col2: st.download_button( label = "download RDF", data = tg.export_rdf(), file_name = "lemma_graph.ttl", mime = "text/turtle", ) st.markdown( """ Turtle/N3: W3C semantic graph representation, based on RDF, OWL, SKOS, etc. """, unsafe_allow_html = True, ) with col3: st.download_button( label = "download KùzuDB", data = tg.export_kuzu(zip_name = "lemma_graph.zip"), file_name = "lemma.zip", mime = "application/x-zip-compressed", ) st.markdown( """ openCypher: ZIP file of a labeled property graph in KùzuDB """, unsafe_allow_html = True, ) ## WIP st.divider() st.write("(WIP)") thanks: str = """ This demo has completed, and thank you for running a Derwen space! """ st.toast( thanks, icon ="😍", )