Spaces:
Sleeping
Sleeping
File size: 1,029 Bytes
3f30d85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 |
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
# Load the model and tokenizer
model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
def summarize_text(text, prefix):
src_text = prefix + text
input_ids = tokenizer(src_text, return_tensors="pt")
generated_tokens = model.generate(**input_ids)
result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
return result[0]
st.title('Text Summarization App')
input_text = st.text_area("Enter the text to summarize:", height=300)
if st.button("Generate Summaries"):
if input_text:
title1 = summarize_text(input_text, 'summary: ')
title2 = summarize_text(input_text, 'summary brief: ')
st.write("### Title 1")
st.write(title1)
st.write("### Title 2")
st.write(title2)
else:
st.warning("Please enter some text to summarize.")
|