Spaces:
Runtime error
Runtime error
import cv2 | |
import torch | |
import onnx | |
import onnxruntime | |
import numpy as np | |
import time | |
# codeformer converted to onnx | |
# using https://github.com/redthing1/CodeFormer | |
class CodeFormerEnhancer: | |
def __init__(self, model_path="codeformer.onnx", device="cpu"): | |
model = onnx.load(model_path) | |
session_options = onnxruntime.SessionOptions() | |
session_options.graph_optimization_level = ( | |
onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
) | |
providers = ["CPUExecutionProvider"] | |
if device == "cuda": | |
providers = [ | |
("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}), | |
"CPUExecutionProvider", | |
] | |
self.session = onnxruntime.InferenceSession( | |
model_path, sess_options=session_options, providers=providers | |
) | |
def enhance(self, img, w=0.9): | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
img = img.astype(np.float32)[:, :, ::-1] / 255.0 | |
img = img.transpose((2, 0, 1)) | |
nrm_mean = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1)) | |
nrm_std = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1)) | |
img = (img - nrm_mean) / nrm_std | |
img = np.expand_dims(img, axis=0) | |
out = self.session.run( | |
None, {"x": img.astype(np.float32), "w": np.array([w], dtype=np.double)} | |
)[0] | |
out = (out[0].transpose(1, 2, 0).clip(-1, 1) + 1) * 0.5 | |
out = (out * 255)[:, :, ::-1] | |
return out.astype("uint8") | |