Spaces:
Sleeping
Sleeping
File size: 5,532 Bytes
91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb 91bea57 44977bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
from flask import Flask, render_template, request, redirect, url_for
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import joblib
from sklearn.preprocessing import MinMaxScaler
from sklearn.neighbors import LocalOutlierFactor
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
import os
from sklearn.metrics import mean_squared_error, mean_absolute_percentage_error, r2_score, mean_absolute_error
app = Flask(__name__)
history_data = pd.read_csv('./datasets/HistoricalCardano.csv')
history_data = history_data.reindex(index=history_data.index[::-1])
history_data = history_data.reset_index(drop=True)
history_data['Tanggal'] = pd.to_datetime(history_data['Tanggal'], dayfirst=True)
history_data['Perubahan%'] = history_data['Perubahan%'].str.replace('%', '').str.replace(',', '.').astype(float)
history_data['Perubahan%'] = history_data['Perubahan%'].astype(float)
history_data['Vol.'] = history_data['Vol.'].str.replace('M', 'e6').str.replace('B', 'e9').str.replace(',', '.').astype(float)
history_data['Terakhir'] = history_data['Terakhir'].str.replace(',', '.').astype(float)
history_data['Pembukaan'] = history_data['Pembukaan'].str.replace(',', '.').astype(float)
history_data['Tertinggi'] = history_data['Tertinggi'].str.replace(',', '.').astype(float)
history_data['Terendah'] = history_data['Terendah'].str.replace(',', '.').astype(float)
history_data = history_data.set_index('Tanggal')
# Calculate 30-day moving average
history_data['MA30'] = history_data['Terakhir'].rolling(window=30).mean()
plt.figure(figsize=(10, 6))
plt.plot(history_data['Pembukaan'], label='Harga Pembukaan')
plt.plot(history_data['Terakhir'], label='Harga Terakhir')
plt.plot(history_data['MA30'], label='MA 30', linestyle='--', color='red')
plt.xlabel('Tanggal')
plt.ylabel('Harga')
plt.title('Pergerakan Harga Pembukaan dan Terakhir dengan MA 30')
plt.legend()
plot_ma_a = os.path.join('static', 'ma_a.png')
plt.savefig(plot_ma_a)
plt.close()
# Calculate 30-day moving average
history_data['MA30'] = history_data['Terakhir'].rolling(window=30).mean()
plt.figure(figsize=(10, 6))
plt.plot(history_data['Tertinggi'], label='Harga Tertinggi')
plt.plot(history_data['Terendah'], label='Harga Terendah')
plt.plot(history_data['MA30'], label='MA 30', linestyle='--', color='red')
plt.xlabel('Tanggal')
plt.ylabel('Harga')
plt.title('Pergerakan Harga Tertinggi dan Terendah dengan MA 30')
plt.legend()
plot_ma_b = os.path.join('static', 'ma_b.png')
plt.savefig(plot_ma_b)
plt.close()
history_data = history_data.drop(columns=['MA30'])
def create_lagged_features(data, lags=3):
lagged_data = data.copy()
for lag in range(1, lags + 1):
lagged_data[[f"{col}_lag{lag}" for col in data.columns]] = data.shift(lag)
lagged_data.dropna(inplace=True)
return lagged_data
lags = 30 * 24
# Load the model
model = joblib.load('./models/random_forest_model.pkl')
lagged_data = create_lagged_features(history_data.drop(['Vol.', 'Perubahan%'], axis=1), lags)
X = lagged_data.drop(columns=['Pembukaan', 'Terakhir', 'Tertinggi', 'Terendah'])
y = lagged_data["Pembukaan"]
def multistep_forecast(model, data, n_steps):
forecast = []
last_observation = data.iloc[-1].values.reshape(1, -1)
for _ in range(n_steps):
next_step = model.predict(last_observation)
forecast.append(next_step[0])
# Update the last observation with the new prediction
last_observation = np.roll(last_observation, -1)
last_observation[0, -1] = next_step[0]
return forecast
@app.route('/')
def index():
table_html = history_data.to_html(classes='table table-striped', index=True)
return render_template('index.html', table_html=table_html, plot_ma_a=plot_ma_a, plot_ma_b=plot_ma_b)
@app.route('/predict', methods=['GET', 'POST'])
def predict():
n_steps = 0
if request.method == 'POST':
if request.form['waktu'] == '1 bulan':
n_steps = 30
elif request.form['waktu'] == '3 bulan':
n_steps = 30 * 3
elif request.form['waktu'] == '6 bulan':
n_steps = 30 * 6
elif request.form['waktu'] == '1 tahun':
n_steps = 30 * 12
elif request.form['waktu'] == '2 tahun':
n_steps = 30 * 24
# Perform the forecast
forecasted_values = multistep_forecast(model, X, n_steps)
# Combine past and forecasted values
combined_values = np.concatenate([y.values, forecasted_values])
# Create a time index for the combined values
time_index = pd.date_range(start=y.index[0], periods=len(combined_values), freq='D')
plt.figure(figsize=(12, 6))
plt.plot(history_data.index, history_data['Pembukaan'], label="Past Data", linestyle="-", color="blue")
plt.plot(time_index[len(y):], forecasted_values, label="Forecasted Values", linestyle="-", color="green")
plt.title("All Past Data and Forecasted Future Values")
plt.xlabel("Date")
plt.ylabel("Values")
plt.legend()
plt.grid()
result_img = os.path.join('static', 'result.png')
plt.savefig(result_img)
plt.close()
forecasted_df = pd.DataFrame({
'Tanggal': time_index[len(y):],
'Forecasted_Pembukaan': forecasted_values
})
forecasted_df.to_csv('./datasets/forecasted_values.csv', index=False)
return render_template('predict.html', result_img=result_img, forecasted_table=forecasted_df.to_html(classes='table table-striped', index=False))
else:
return redirect(url_for('index'))
if __name__ == '__main__':
app.run(debug=True) |