Spaces:
Running
Running
Yang Gu
commited on
Commit
·
ab4a702
1
Parent(s):
7be4bb6
Add more demos
Browse files- css/DemoLayout.css +187 -0
- css/HomePage.css +46 -0
- css/MainLayout.css +102 -0
- css/styles.css +48 -0
- {llm-inference → demos/llm-inference}/gemma-2b-it-gpu-int4.bin +0 -0
- {llm-inference → demos/llm-inference}/index.html +1 -1
- {llm-inference → demos/llm-inference}/index.js +0 -0
- demos/sd-turbo/index.html +717 -0
- demos/sd-turbo/models/text_encoder/model.onnx +3 -0
- demos/sd-turbo/models/tokenizer/tokenizer.json +0 -0
- demos/sd-turbo/models/tokenizer/tokenizer_config.json +34 -0
- demos/sd-turbo/models/unet/model.onnx +3 -0
- demos/sd-turbo/models/vae_decoder/model.onnx +3 -0
- index.html +39 -42
- main.js +0 -0
- menu.svg +16 -0
css/DemoLayout.css
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#demo {
|
2 |
+
flex: 1 1 auto;
|
3 |
+
display: flex;
|
4 |
+
flex-direction: column;
|
5 |
+
}
|
6 |
+
|
7 |
+
.demoContainer {
|
8 |
+
text-align: center;
|
9 |
+
width: 100%;
|
10 |
+
}
|
11 |
+
.demoContainer iframe {
|
12 |
+
width: 100%;
|
13 |
+
height: 100%;
|
14 |
+
border: none;
|
15 |
+
display: block;
|
16 |
+
/* should should remain white because demos in iframes expect a white background */
|
17 |
+
color-scheme: light;
|
18 |
+
background-color: #fff;
|
19 |
+
}
|
20 |
+
|
21 |
+
.demoCategory {
|
22 |
+
margin-top: 0.25em;
|
23 |
+
margin-bottom: 0.25em;
|
24 |
+
position: relative;
|
25 |
+
}
|
26 |
+
|
27 |
+
[data-tooltip] {
|
28 |
+
cursor: pointer;
|
29 |
+
}
|
30 |
+
|
31 |
+
[data-tooltip]::after {
|
32 |
+
pointer-events: none;
|
33 |
+
content: attr(data-tooltip);
|
34 |
+
background-color: var(--tooltip-background);
|
35 |
+
box-shadow: 0 0 2px 2px var(--tooltip-border);
|
36 |
+
border-radius: 10px;
|
37 |
+
transition: opacity 0.2s ease-in, transform 0.2s ease-out;
|
38 |
+
padding: 0.5em;
|
39 |
+
opacity: 0;
|
40 |
+
display: block;
|
41 |
+
position: absolute;
|
42 |
+
transform: translateY(-0.5em);
|
43 |
+
}
|
44 |
+
|
45 |
+
[data-tooltip]:hover::after {
|
46 |
+
opacity: 1;
|
47 |
+
transform: translateY(0.25em);
|
48 |
+
}
|
49 |
+
|
50 |
+
nav.sourceFileNav {
|
51 |
+
display: flex;
|
52 |
+
align-items: flex-start;
|
53 |
+
}
|
54 |
+
|
55 |
+
nav.sourceFileNav ul {
|
56 |
+
box-sizing: border-box;
|
57 |
+
list-style-type: none;
|
58 |
+
padding: 0;
|
59 |
+
margin: 0;
|
60 |
+
margin-top: 15px;
|
61 |
+
position: relative;
|
62 |
+
}
|
63 |
+
|
64 |
+
nav.sourceFileNav li {
|
65 |
+
display: inline-block;
|
66 |
+
margin: 0;
|
67 |
+
padding: 0;
|
68 |
+
transition: 0.3s cubic-bezier(0.175, 0.885, 0.32, 1.275);
|
69 |
+
}
|
70 |
+
|
71 |
+
nav.sourceFileNav::before {
|
72 |
+
content: '';
|
73 |
+
position: absolute;
|
74 |
+
display: flex;
|
75 |
+
flex-direction: column;
|
76 |
+
justify-content: center;
|
77 |
+
align-items: flex-start;
|
78 |
+
width: 30px;
|
79 |
+
height: 37px;
|
80 |
+
top: 15px;
|
81 |
+
left: 0px;
|
82 |
+
pointer-events: none;
|
83 |
+
}
|
84 |
+
|
85 |
+
nav.sourceFileNav[data-left=true]::before {
|
86 |
+
background: linear-gradient(90deg, rgba(0, 0, 0, 0.35), transparent);
|
87 |
+
}
|
88 |
+
|
89 |
+
nav.sourceFileNav::after {
|
90 |
+
content: '';
|
91 |
+
position: absolute;
|
92 |
+
display: flex;
|
93 |
+
justify-content: center;
|
94 |
+
align-items: center;
|
95 |
+
width: 30px;
|
96 |
+
height: 37px;
|
97 |
+
top: 15px;
|
98 |
+
right: 0px;
|
99 |
+
pointer-events: none;
|
100 |
+
}
|
101 |
+
|
102 |
+
nav.sourceFileNav[data-right=true]::after {
|
103 |
+
background: linear-gradient(270deg, rgba(0, 0, 0, 0.35), transparent);
|
104 |
+
}
|
105 |
+
|
106 |
+
.sourceLR {
|
107 |
+
display: none;
|
108 |
+
cursor: pointer;
|
109 |
+
width: 5em;
|
110 |
+
padding: 10px;
|
111 |
+
margin-top: 15px;
|
112 |
+
text-align: center;
|
113 |
+
color: var(--source-tab-color);
|
114 |
+
background-color: var(--source-tab-background);
|
115 |
+
border-left: 1px solid rgba(0, 0, 0, 0.5);
|
116 |
+
border-right: 1px solid rgba(0, 0, 0, 0.5);
|
117 |
+
}
|
118 |
+
.sourceLR:hover {
|
119 |
+
text-decoration: underline;
|
120 |
+
}
|
121 |
+
.sourceLRShow .sourceLR {
|
122 |
+
display: block;
|
123 |
+
}
|
124 |
+
|
125 |
+
nav.sourceFileNav div.sourceFileScrollContainer {
|
126 |
+
white-space: nowrap;
|
127 |
+
overflow-x: auto;
|
128 |
+
scrollbar-width: thin;
|
129 |
+
}
|
130 |
+
|
131 |
+
nav.sourceFileNav div.sourceFileScrollContainer::-webkit-scrollbar {
|
132 |
+
display: inline;
|
133 |
+
margin-top: 10px;
|
134 |
+
margin-bottom: 10px;
|
135 |
+
height: 11px;
|
136 |
+
width: 10px;
|
137 |
+
}
|
138 |
+
|
139 |
+
nav.sourceFileNav div.sourceFileScrollContainer::-webkit-scrollbar-thumb {
|
140 |
+
background: rgb(200, 200, 200);
|
141 |
+
height: 4px;
|
142 |
+
border-radius: 20px;
|
143 |
+
-webkit-box-shadow: inset 0px 0px 10px rgb(45, 33, 33);
|
144 |
+
border: 0.5px solid transparent;
|
145 |
+
background-clip: content-box;
|
146 |
+
}
|
147 |
+
|
148 |
+
nav.sourceFileNav div.sourceFileScrollContainer::-webkit-scrollbar-track {
|
149 |
+
background: rgba(0, 0, 0, 0);
|
150 |
+
}
|
151 |
+
|
152 |
+
nav.sourceFileNav li a {
|
153 |
+
display: block;
|
154 |
+
margin: 0;
|
155 |
+
padding: 10px;
|
156 |
+
color: var(--source-tab-color);
|
157 |
+
background-color: var(--source-tab-background);
|
158 |
+
border-right: 1px solid rgba(0, 0, 0, 0.5);
|
159 |
+
}
|
160 |
+
|
161 |
+
nav.sourceFileNav li:hover {
|
162 |
+
height: 100%;
|
163 |
+
box-shadow: 0 -10px 0 0 rgb(167, 167, 167);
|
164 |
+
border-radius: 10px
|
165 |
+
}
|
166 |
+
|
167 |
+
nav.sourceFileNav li a[data-active=true] {
|
168 |
+
background-color: var(--source-tab-active-background);
|
169 |
+
}
|
170 |
+
|
171 |
+
nav.sourceFileNav li:has(a[data-active=true]) {
|
172 |
+
box-shadow: 0 -10px 0 0 var(--source-tab-active-shadow);
|
173 |
+
border-radius: 10px;
|
174 |
+
}
|
175 |
+
|
176 |
+
.sourceFileContainer {
|
177 |
+
overflow: hidden;
|
178 |
+
height: 0;
|
179 |
+
}
|
180 |
+
|
181 |
+
.sourceFileContainer[data-active=true] {
|
182 |
+
height: auto;
|
183 |
+
}
|
184 |
+
|
185 |
+
.sourceFileContainer :global(.CodeMirror) {
|
186 |
+
margin-top: 0;
|
187 |
+
}
|
css/HomePage.css
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
:root {
|
2 |
+
color-scheme: light dark;
|
3 |
+
|
4 |
+
/* these are the light colors */
|
5 |
+
--background: #eee;
|
6 |
+
|
7 |
+
--code-background: #ccc;
|
8 |
+
--link: #045b88;
|
9 |
+
|
10 |
+
--panel-color: #000;
|
11 |
+
--panel-background: #ddd;
|
12 |
+
--panel-emphasis: rgb(20, 62, 84);
|
13 |
+
|
14 |
+
--tooltip-background: #eee;
|
15 |
+
--tooltip-border: rgba(0, 0, 0, 0.1);
|
16 |
+
|
17 |
+
--source-tab-color: black;
|
18 |
+
--source-tab-background: #CCC;
|
19 |
+
--source-tab-active-background: #FFF;
|
20 |
+
--source-tab-active-shadow: #EEE;
|
21 |
+
}
|
22 |
+
|
23 |
+
@media (prefers-color-scheme: dark) {
|
24 |
+
:root {
|
25 |
+
/* these are the dark colors */
|
26 |
+
--background: #000;
|
27 |
+
|
28 |
+
--code-background: #555;
|
29 |
+
--link: #02abff;
|
30 |
+
|
31 |
+
--panel-color: #02abff;
|
32 |
+
--panel-background: #222;
|
33 |
+
--panel-emphasis: rgb(115, 206, 255);
|
34 |
+
|
35 |
+
--tooltip-background: #111;
|
36 |
+
--tooltip-border: rgba(255, 255, 255, 0.1);
|
37 |
+
|
38 |
+
--source-tab-color: white;
|
39 |
+
--source-tab-background: #444;
|
40 |
+
--source-tab-active-background: #282828;
|
41 |
+
--source-tab-active-shadow: rgb(167, 167, 167);
|
42 |
+
}
|
43 |
+
}
|
44 |
+
|
45 |
+
.homePage {
|
46 |
+
}
|
css/MainLayout.css
ADDED
@@ -0,0 +1,102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
.container {
|
2 |
+
padding-left: 15px;
|
3 |
+
padding-right: 15px;
|
4 |
+
}
|
5 |
+
|
6 |
+
.wrapper {
|
7 |
+
display: flex;
|
8 |
+
height: 100%;
|
9 |
+
}
|
10 |
+
|
11 |
+
.panel {
|
12 |
+
flex: 1 0 auto;
|
13 |
+
max-width: 300px;
|
14 |
+
height: 100%;
|
15 |
+
overflow-y: auto;
|
16 |
+
position: relative;
|
17 |
+
color: var(--panel-color);
|
18 |
+
background-color: var(--panel-background);
|
19 |
+
}
|
20 |
+
|
21 |
+
.exampleList {
|
22 |
+
padding: 0;
|
23 |
+
margin-block-start: 16px;
|
24 |
+
margin-block-end: 16px;
|
25 |
+
}
|
26 |
+
|
27 |
+
.exampleList h3 {
|
28 |
+
color: var(--panel-emphasis);
|
29 |
+
}
|
30 |
+
|
31 |
+
code {
|
32 |
+
background-color: var(--code-background);
|
33 |
+
border: 2px solid var(--code-background);
|
34 |
+
border-radius: 0.25em;
|
35 |
+
}
|
36 |
+
|
37 |
+
.exampleList li {
|
38 |
+
list-style: none;
|
39 |
+
padding: 0.3em 0;
|
40 |
+
}
|
41 |
+
|
42 |
+
.expand {
|
43 |
+
display: none;
|
44 |
+
position: absolute;
|
45 |
+
right: 1em;
|
46 |
+
top: 1em;
|
47 |
+
width: 36px;
|
48 |
+
height: 36px;
|
49 |
+
background-image: url(../menu.svg);
|
50 |
+
background-size: cover;
|
51 |
+
}
|
52 |
+
|
53 |
+
.panel .panelContents {
|
54 |
+
display: block;
|
55 |
+
transition: max-height 0s;
|
56 |
+
max-height: 100vh;
|
57 |
+
}
|
58 |
+
|
59 |
+
#menuToggle {
|
60 |
+
display: none;
|
61 |
+
}
|
62 |
+
|
63 |
+
main {
|
64 |
+
overflow: auto;
|
65 |
+
}
|
66 |
+
|
67 |
+
@media only screen and (max-width: 768px) {
|
68 |
+
.wrapper {
|
69 |
+
flex-direction: column;
|
70 |
+
}
|
71 |
+
|
72 |
+
main {
|
73 |
+
overflow: visible;
|
74 |
+
}
|
75 |
+
|
76 |
+
#menuToggle ~ .panelContents {
|
77 |
+
max-height: 0;
|
78 |
+
overflow: hidden;
|
79 |
+
}
|
80 |
+
|
81 |
+
#menuToggle:checked ~ .panelContents {
|
82 |
+
max-height: 2000px;
|
83 |
+
}
|
84 |
+
|
85 |
+
.panel .panelContents {
|
86 |
+
display: block;
|
87 |
+
transition: max-height 0.3s ease-out;
|
88 |
+
}
|
89 |
+
|
90 |
+
.panel {
|
91 |
+
flex: 0 0 fit-content;
|
92 |
+
max-width: 100%;
|
93 |
+
height: auto;
|
94 |
+
overflow: hidden;
|
95 |
+
}
|
96 |
+
|
97 |
+
.expand {
|
98 |
+
display: inline-block;
|
99 |
+
}
|
100 |
+
|
101 |
+
}
|
102 |
+
|
css/styles.css
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@import url('HomePage.css');
|
2 |
+
@import url('MainLayout.css');
|
3 |
+
@import url('DemoLayout.css');
|
4 |
+
|
5 |
+
* {
|
6 |
+
box-sizing: border-box;
|
7 |
+
}
|
8 |
+
*, *:before, *:after {
|
9 |
+
box-sizing: inherit;
|
10 |
+
}
|
11 |
+
|
12 |
+
html, body {
|
13 |
+
margin: 0;
|
14 |
+
height: 100%;
|
15 |
+
background-color: var(--background);
|
16 |
+
}
|
17 |
+
|
18 |
+
body {
|
19 |
+
font-family: 'Inconsolata', monospace;
|
20 |
+
}
|
21 |
+
|
22 |
+
a {
|
23 |
+
text-decoration: none;
|
24 |
+
color: var(--link)
|
25 |
+
}
|
26 |
+
|
27 |
+
a:hover {
|
28 |
+
text-decoration: underline;
|
29 |
+
}
|
30 |
+
|
31 |
+
main {
|
32 |
+
display: flex;
|
33 |
+
flex-direction: column;
|
34 |
+
position: relative;
|
35 |
+
flex: 1;
|
36 |
+
padding-left: 15px;
|
37 |
+
padding-right: 15px;
|
38 |
+
}
|
39 |
+
|
40 |
+
.CodeMirror {
|
41 |
+
height: auto !important;
|
42 |
+
margin: 1em 0;
|
43 |
+
}
|
44 |
+
|
45 |
+
.CodeMirror-scroll {
|
46 |
+
height: auto !important;
|
47 |
+
overflow: visible !important;
|
48 |
+
}
|
{llm-inference → demos/llm-inference}/gemma-2b-it-gpu-int4.bin
RENAMED
File without changes
|
{llm-inference → demos/llm-inference}/index.html
RENAMED
@@ -18,7 +18,7 @@ limitations under the License. -->
|
|
18 |
<title>LLM Inference Web Demo</title>
|
19 |
</head>
|
20 |
<body>
|
21 |
-
<script src="
|
22 |
<div style="text-align: center">
|
23 |
<text id="model-progress">Downloading model</text><br />
|
24 |
Input<br />
|
|
|
18 |
<title>LLM Inference Web Demo</title>
|
19 |
</head>
|
20 |
<body>
|
21 |
+
<script src="../../util.js"></script>
|
22 |
<div style="text-align: center">
|
23 |
<text id="model-progress">Downloading model</text><br />
|
24 |
Input<br />
|
{llm-inference → demos/llm-inference}/index.js
RENAMED
File without changes
|
demos/sd-turbo/index.html
ADDED
@@ -0,0 +1,717 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<html>
|
2 |
+
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.1/dist/css/bootstrap.min.css" rel="stylesheet"
|
3 |
+
integrity="sha384-4bw+/aepP/YC94hEpVNVgiZdgIC5+VKNBQNGCHeKRQN+PtmoHDEXuppvnDJzQIu9" crossorigin="anonymous" />
|
4 |
+
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.1/dist/js/bootstrap.bundle.min.js"
|
5 |
+
integrity="sha384-HwwvtgBNo3bZJJLYd8oVXjrBZt8cqVSpeBNS5n7C8IVInixGAoxmnlMuBnhbgrkm" crossorigin="anonymous">
|
6 |
+
</script>
|
7 |
+
<script type="module">
|
8 |
+
import { env, AutoTokenizer } from 'https://cdn.jsdelivr.net/npm/@xenova/transformers/dist/transformers.js'
|
9 |
+
window.AutoTokenizer = AutoTokenizer;
|
10 |
+
env.localModelPath = 'models';
|
11 |
+
</script>
|
12 |
+
<script src="https://cdn.jsdelivr.net/npm/onnxruntime-web@dev/dist/ort.webgpu.min.js">
|
13 |
+
</script>
|
14 |
+
|
15 |
+
<head>
|
16 |
+
<title>Stable Diffusion Turbo</title>
|
17 |
+
</head>
|
18 |
+
|
19 |
+
<style>
|
20 |
+
.onerow {
|
21 |
+
display: flex;
|
22 |
+
}
|
23 |
+
</style>
|
24 |
+
|
25 |
+
<body data-bs-theme="dark">
|
26 |
+
<div class="container">
|
27 |
+
<div class="row pt-3">
|
28 |
+
<div class="col-md-9 col-12">
|
29 |
+
<h2>Stable Diffusion Turbo</h2>
|
30 |
+
</div>
|
31 |
+
</div>
|
32 |
+
<div class="container p-2 card" id="input-area">
|
33 |
+
<div class="input-group">
|
34 |
+
<textarea class="form-control" id="user-input" placeholder="Type your question here..."></textarea>
|
35 |
+
<button id="send-button" class="btn btn-primary">Send</button>
|
36 |
+
</div>
|
37 |
+
</div>
|
38 |
+
<!--<div id="image_area">
|
39 |
+
<div class="onerow">
|
40 |
+
<div id="img_div_0" style="margin-right: 4px;">
|
41 |
+
<canvas id="img_canvas_0"></canvas>
|
42 |
+
</div>
|
43 |
+
<div id="img_div_1" style="margin-right: 4px;">
|
44 |
+
<canvas id="img_canvas_1"></canvas>
|
45 |
+
</div>
|
46 |
+
<div id="img_div_2" style="margin-right: 4px;">
|
47 |
+
<canvas id="img_canvas_2"></canvas>
|
48 |
+
</div>
|
49 |
+
<div id="img_div_3" style="margin-right: 4px;">
|
50 |
+
<canvas id="img_canvas_3"></canvas>
|
51 |
+
</div>
|
52 |
+
</div>
|
53 |
+
</div>-->
|
54 |
+
<div class="right">
|
55 |
+
<canvas class='canvas' id='canvas' width='512' height='512'>
|
56 |
+
Canvas is not supported. You'll need to try a newer browser version or another browser.
|
57 |
+
</canvas>
|
58 |
+
</div>
|
59 |
+
<p class="text-lg-start">
|
60 |
+
<div id="status" style="font: 1em consolas;"></div>
|
61 |
+
</p>
|
62 |
+
</div>
|
63 |
+
</body>
|
64 |
+
|
65 |
+
<script>
|
66 |
+
|
67 |
+
var deviceWebgpu = null;
|
68 |
+
var queueWebgpu = null;
|
69 |
+
var textEncoderOutputsBuffer = null;
|
70 |
+
var textEncoderOutputsTensor = null;
|
71 |
+
var textEncoderOutputs = {};
|
72 |
+
var latentData = null;
|
73 |
+
var latentBuffer = null;
|
74 |
+
var unetSampleInputsBuffer = null;
|
75 |
+
var unetSampleInputsTensor = null;
|
76 |
+
var unetOutSampleBuffer = null;
|
77 |
+
var unetOutSampleTensor = null;
|
78 |
+
var prescaleLatentSpacePipeline = null;
|
79 |
+
var prescaleLatentSpaceBindGroup = null;
|
80 |
+
var stepLatentSpacePipeline = null;
|
81 |
+
var stepLatentSpaceBindGroup = null;
|
82 |
+
var decodedOutputsBuffer = null;
|
83 |
+
var decodedOutputsTensor = null;
|
84 |
+
const pixelHeight = 512;
|
85 |
+
const pixelWidth = 512;
|
86 |
+
var renderContext = null;
|
87 |
+
var renderPipeline = null;
|
88 |
+
var renderBindGroup = null;
|
89 |
+
|
90 |
+
const PRESCALE_LATENT_SPACE_SHADER = `
|
91 |
+
@binding(0) @group(0) var<storage, read_write> result: array<vec4<f32>>;
|
92 |
+
@binding(1) @group(0) var<storage, read> latentData: array<vec4<f32>>;
|
93 |
+
|
94 |
+
@compute @workgroup_size(128, 1, 1)
|
95 |
+
fn _start(@builtin(global_invocation_id) GlobalId : vec3<u32>) {
|
96 |
+
let index = GlobalId.x;
|
97 |
+
let value = latentData[index] / 14.64877241136608;
|
98 |
+
result[index] = value;
|
99 |
+
}
|
100 |
+
`;
|
101 |
+
|
102 |
+
const STEP_LATENT_SPACE_SHADER = `
|
103 |
+
@binding(0) @group(0) var<storage, read_write> result: array<vec4<f32>>;
|
104 |
+
@binding(1) @group(0) var<storage, read> latentData: array<vec4<f32>>;
|
105 |
+
|
106 |
+
@compute @workgroup_size(128, 1, 1)
|
107 |
+
fn _start(@builtin(global_invocation_id) GlobalId : vec3<u32>) {
|
108 |
+
let index = GlobalId.x;
|
109 |
+
let sigma_hat = 14.6146;
|
110 |
+
let latentVal = latentData[index];
|
111 |
+
let outputSampleVal = result[index];
|
112 |
+
|
113 |
+
let pred_original_sample = latentVal - 14.6146 * outputSampleVal;
|
114 |
+
let derivative = (latentVal - pred_original_sample) / 14.6146;
|
115 |
+
let dt = -14.6146;
|
116 |
+
result[index] = (latentVal + derivative * dt) / 0.18215;
|
117 |
+
}
|
118 |
+
`;
|
119 |
+
|
120 |
+
const VERTEX_SHADER = `
|
121 |
+
struct VertexOutput {
|
122 |
+
@builtin(position) Position : vec4<f32>,
|
123 |
+
@location(0) fragUV : vec2<f32>,
|
124 |
+
}
|
125 |
+
|
126 |
+
@vertex
|
127 |
+
fn main(@builtin(vertex_index) VertexIndex : u32) -> VertexOutput {
|
128 |
+
var pos = array<vec2<f32>, 6>(
|
129 |
+
vec2<f32>( 1.0, 1.0),
|
130 |
+
vec2<f32>( 1.0, -1.0),
|
131 |
+
vec2<f32>(-1.0, -1.0),
|
132 |
+
vec2<f32>( 1.0, 1.0),
|
133 |
+
vec2<f32>(-1.0, -1.0),
|
134 |
+
vec2<f32>(-1.0, 1.0)
|
135 |
+
);
|
136 |
+
|
137 |
+
var uv = array<vec2<f32>, 6>(
|
138 |
+
vec2<f32>(1.0, 0.0),
|
139 |
+
vec2<f32>(1.0, 1.0),
|
140 |
+
vec2<f32>(0.0, 1.0),
|
141 |
+
vec2<f32>(1.0, 0.0),
|
142 |
+
vec2<f32>(0.0, 1.0),
|
143 |
+
vec2<f32>(0.0, 0.0)
|
144 |
+
);
|
145 |
+
|
146 |
+
var output : VertexOutput;
|
147 |
+
output.Position = vec4<f32>(pos[VertexIndex], 0.0, 1.0);
|
148 |
+
output.fragUV = uv[VertexIndex];
|
149 |
+
return output;
|
150 |
+
}
|
151 |
+
`;
|
152 |
+
|
153 |
+
const PIXEL_SHADER = `
|
154 |
+
@group(0) @binding(1) var<storage, read> buf : array<f32>;
|
155 |
+
|
156 |
+
@fragment
|
157 |
+
fn main(@location(0) fragUV : vec2<f32>) -> @location(0) vec4<f32> {
|
158 |
+
// The user-facing camera is mirrored, flip horizontally.
|
159 |
+
var coord = vec2(0.0, 0.0);
|
160 |
+
if (fragUV.x < 0.5) {
|
161 |
+
coord = vec2(fragUV.x + 0.5, fragUV.y);
|
162 |
+
} else {
|
163 |
+
coord = vec2(fragUV.x - 0.5, fragUV.y);
|
164 |
+
}
|
165 |
+
|
166 |
+
let redInputOffset = 0;
|
167 |
+
let greenInputOffset = 262144;
|
168 |
+
let blueInputOffset = 524288;
|
169 |
+
let index = i32(coord.x * f32(512)) + i32(coord.y * f32(512) * f32(512)); // pixelWidth = pixelHeight= 512
|
170 |
+
let r = clamp(buf[index] / 2 + 0.5, 0.0, 1.0);
|
171 |
+
let g = clamp(buf[262144 + index] / 2 + 0.5, 0.0, 1.0);
|
172 |
+
let b = clamp(buf[524288 + index] / 2 + 0.5, 0.0, 1.0);
|
173 |
+
let a = 1.0;
|
174 |
+
|
175 |
+
var out_color = vec4<f32>(r, g, b, a);
|
176 |
+
|
177 |
+
return out_color;
|
178 |
+
}
|
179 |
+
`
|
180 |
+
|
181 |
+
function log(i) { console.log(i); document.getElementById('status').innerText += `\n${i}`; }
|
182 |
+
|
183 |
+
function getConfig() {
|
184 |
+
const query = window.location.search.substring(1);
|
185 |
+
var config = {
|
186 |
+
// model: "models/onnx-sd-turbo-fp16",
|
187 |
+
//model: "https://huggingface.co/schmuell/sd-turbo-ort-web/resolve/main",
|
188 |
+
model: "models",
|
189 |
+
provider: "webgpu",
|
190 |
+
device: "gpu",
|
191 |
+
threads: "1",
|
192 |
+
images: "1",
|
193 |
+
};
|
194 |
+
let vars = query.split("&");
|
195 |
+
for (var i = 0; i < vars.length; i++) {
|
196 |
+
let pair = vars[i].split("=");
|
197 |
+
if (pair[0] in config) {
|
198 |
+
config[pair[0]] = decodeURIComponent(pair[1]);
|
199 |
+
} else if (pair[0].length > 0) {
|
200 |
+
throw new Error("unknown argument: " + pair[0]);
|
201 |
+
}
|
202 |
+
}
|
203 |
+
config.threads = parseInt(config.threads);
|
204 |
+
config.images = parseInt(config.images);
|
205 |
+
return config;
|
206 |
+
}
|
207 |
+
|
208 |
+
function randn_latents(shape, noise_sigma) {
|
209 |
+
function randn() {
|
210 |
+
// Use the Box-Muller transform
|
211 |
+
let u = Math.random();
|
212 |
+
let v = Math.random();
|
213 |
+
let z = Math.sqrt(-2 * Math.log(u)) * Math.cos(2 * Math.PI * v);
|
214 |
+
return z;
|
215 |
+
}
|
216 |
+
let size = 1;
|
217 |
+
shape.forEach(element => {
|
218 |
+
size *= element;
|
219 |
+
});
|
220 |
+
|
221 |
+
let data = new Float32Array(size);
|
222 |
+
// Loop over the shape dimensions
|
223 |
+
for (let i = 0; i < size; i++) {
|
224 |
+
data[i] = randn() * noise_sigma;
|
225 |
+
}
|
226 |
+
return data;
|
227 |
+
}
|
228 |
+
|
229 |
+
async function fetchAndCache(base_url, model_path) {
|
230 |
+
const url = `${base_url}/${model_path}`;
|
231 |
+
try {
|
232 |
+
const cache = await caches.open("onnx");
|
233 |
+
let cachedResponse = await cache.match(url);
|
234 |
+
if (cachedResponse == undefined) {
|
235 |
+
await cache.add(url);
|
236 |
+
cachedResponse = await cache.match(url);
|
237 |
+
log(`${model_path} (network)`);
|
238 |
+
} else {
|
239 |
+
log(`${model_path} (cached)`);
|
240 |
+
}
|
241 |
+
const data = await cachedResponse.arrayBuffer();
|
242 |
+
return data;
|
243 |
+
} catch (error) {
|
244 |
+
log(`${model_path} (network)`);
|
245 |
+
return await fetch(url).then(response => response.arrayBuffer());
|
246 |
+
}
|
247 |
+
}
|
248 |
+
|
249 |
+
function uploadToGPU(buffer, values, type) {
|
250 |
+
|
251 |
+
const stagingBuffer = deviceWebgpu.createBuffer({
|
252 |
+
usage: GPUBufferUsage.MAP_WRITE | GPUBufferUsage.COPY_SRC,
|
253 |
+
size: values.buffer.byteLength,
|
254 |
+
mappedAtCreation: true
|
255 |
+
});
|
256 |
+
const arrayBuffer = stagingBuffer.getMappedRange();
|
257 |
+
if (type === 'float32') {
|
258 |
+
new Float32Array(arrayBuffer).set(values);
|
259 |
+
} else if (type === 'int32') {
|
260 |
+
new Int32Array(arrayBuffer).set(values);
|
261 |
+
}
|
262 |
+
stagingBuffer.unmap();
|
263 |
+
const encoder = deviceWebgpu.createCommandEncoder();
|
264 |
+
encoder.copyBufferToBuffer(stagingBuffer, 0, buffer, 0, values.byteLength);
|
265 |
+
deviceWebgpu.queue.submit([encoder.finish()]);
|
266 |
+
stagingBuffer.destroy();
|
267 |
+
}
|
268 |
+
|
269 |
+
function submitComputeTask(pipeline, bindGroup) {
|
270 |
+
let commandEncoderWebgpu = deviceWebgpu.createCommandEncoder();
|
271 |
+
let computePassEncoder = commandEncoderWebgpu.beginComputePass();
|
272 |
+
computePassEncoder.setPipeline(pipeline);
|
273 |
+
computePassEncoder.setBindGroup(0, bindGroup);
|
274 |
+
computePassEncoder.dispatchWorkgroups(32, 1, 1);
|
275 |
+
computePassEncoder.end();
|
276 |
+
computePassEncoder = null;
|
277 |
+
queueWebgpu.submit([commandEncoderWebgpu.finish()]);
|
278 |
+
}
|
279 |
+
|
280 |
+
async function load_models(models) {
|
281 |
+
const cache = await caches.open("onnx");
|
282 |
+
let missing = 0;
|
283 |
+
for (const [name, model] of Object.entries(models)) {
|
284 |
+
const url = `${config.model}/${model.url}`;
|
285 |
+
let cachedResponse = await cache.match(url);
|
286 |
+
if (cachedResponse === undefined) {
|
287 |
+
missing += model.size;
|
288 |
+
}
|
289 |
+
}
|
290 |
+
if (missing > 0) {
|
291 |
+
log(`downloading ${missing} MB from network ... it might take a while`);
|
292 |
+
} else {
|
293 |
+
log("loading...");
|
294 |
+
}
|
295 |
+
let loadedCount = 0;
|
296 |
+
for (const [name, model] of Object.entries(models)) {
|
297 |
+
try {
|
298 |
+
if (loadedCount === 1) {
|
299 |
+
webgpuResourceInitialize();
|
300 |
+
}
|
301 |
+
const start = performance.now();
|
302 |
+
const model_bytes = await fetchAndCache(config.model, model.url);
|
303 |
+
const sess_opt = { ...opt, ...model.opt };
|
304 |
+
// profiling
|
305 |
+
//ort.env.webgpu.profiling = { mode: "default" };
|
306 |
+
models[name].sess = await ort.InferenceSession.create(model_bytes, sess_opt);
|
307 |
+
const stop = performance.now();
|
308 |
+
loadedCount++;
|
309 |
+
log(`${model.url} in ${(stop - start).toFixed(1)}ms`);
|
310 |
+
} catch (e) {
|
311 |
+
log(`${model.url} failed, ${e}`);
|
312 |
+
}
|
313 |
+
}
|
314 |
+
const latent_shape = [1, 4, 64, 64];
|
315 |
+
latentData = randn_latents(latent_shape, sigma);
|
316 |
+
uploadToGPU(latentBuffer, latentData, "float32");
|
317 |
+
submitComputeTask(prescaleLatentSpacePipeline, prescaleLatentSpaceBindGroup);
|
318 |
+
|
319 |
+
log("ready.");
|
320 |
+
}
|
321 |
+
|
322 |
+
const config = getConfig();
|
323 |
+
|
324 |
+
const models = {
|
325 |
+
"unet": {
|
326 |
+
url: "unet/model.onnx", size: 640,
|
327 |
+
// should have 'steps: 1' but will fail to create the session
|
328 |
+
opt: { freeDimensionOverrides: { batch_size: 1, num_channels: 4, height: 64, width: 64, sequence_length: 77, } }
|
329 |
+
},
|
330 |
+
"text_encoder": {
|
331 |
+
url: "text_encoder/model.onnx", size: 1700,
|
332 |
+
// should have 'sequence_length: 77' but produces a bad image
|
333 |
+
opt: { freeDimensionOverrides: { batch_size: 1, } },
|
334 |
+
},
|
335 |
+
"vae_decoder": {
|
336 |
+
url: "vae_decoder/model.onnx", size: 95,
|
337 |
+
opt: { freeDimensionOverrides: { batch_size: 1, num_channels_latent: 4, height_latent: 64, width_latent: 64 } }
|
338 |
+
}
|
339 |
+
}
|
340 |
+
|
341 |
+
const text = document.getElementById("user-input");
|
342 |
+
|
343 |
+
let tokenizer;
|
344 |
+
let loading;
|
345 |
+
const sigma = 14.6146;
|
346 |
+
const gamma = 0;
|
347 |
+
const vae_scaling_factor = 0.18215;
|
348 |
+
|
349 |
+
// text.value = "A cinematic shot of a baby racoon wearing an intricate italian priest robe.";
|
350 |
+
text.value = "Paris with the river in the background";
|
351 |
+
|
352 |
+
if (config.provider == "webgpu") {
|
353 |
+
ort.env.wasm.numThreads = 1;
|
354 |
+
ort.env.wasm.simd = true;
|
355 |
+
} else {
|
356 |
+
ort.env.wasm.numThreads = config.threads;
|
357 |
+
ort.env.wasm.simd = true;
|
358 |
+
}
|
359 |
+
|
360 |
+
const opt = {
|
361 |
+
executionProviders: [config.provider],
|
362 |
+
enableMemPattern: false,
|
363 |
+
enableCpuMemArena: false,
|
364 |
+
extra: {
|
365 |
+
session: {
|
366 |
+
disable_prepacking: "1",
|
367 |
+
use_device_allocator_for_initializers: "1",
|
368 |
+
use_ort_model_bytes_directly: "1",
|
369 |
+
use_ort_model_bytes_for_initializers: "1"
|
370 |
+
}
|
371 |
+
},
|
372 |
+
};
|
373 |
+
|
374 |
+
switch (config.provider) {
|
375 |
+
case "webgpu":
|
376 |
+
if (!("gpu" in navigator)) {
|
377 |
+
throw new Error("webgpu is NOT supported");
|
378 |
+
}
|
379 |
+
opt.preferredOutputLocation = { last_hidden_state: "gpu-buffer" };
|
380 |
+
break;
|
381 |
+
case "webnn":
|
382 |
+
if (!("ml" in navigator)) {
|
383 |
+
throw new Error("webnn is NOT supported");
|
384 |
+
}
|
385 |
+
opt.executionProviders = [{
|
386 |
+
name: "webnn",
|
387 |
+
deviceType: config.device,
|
388 |
+
powerPreference: 'default'
|
389 |
+
}];
|
390 |
+
break;
|
391 |
+
}
|
392 |
+
|
393 |
+
// Event listener for Ctrl + Enter or CMD + Enter
|
394 |
+
document.getElementById('user-input').addEventListener('keydown', function (e) {
|
395 |
+
if ((e.ctrlKey || e.metaKey) && e.key === 'Enter') {
|
396 |
+
run();
|
397 |
+
const latent_shape = [1, 4, 64, 64];
|
398 |
+
latentData = randn_latents(latent_shape, sigma);
|
399 |
+
uploadToGPU(latentBuffer, latentData, "float32");
|
400 |
+
submitComputeTask(prescaleLatentSpacePipeline, prescaleLatentSpaceBindGroup);
|
401 |
+
}
|
402 |
+
});
|
403 |
+
document.getElementById('send-button').addEventListener('click', function (e) {
|
404 |
+
run();
|
405 |
+
const latent_shape = [1, 4, 64, 64];
|
406 |
+
latentData = randn_latents(latent_shape, sigma);
|
407 |
+
uploadToGPU(latentBuffer, latentData, "float32");
|
408 |
+
submitComputeTask(prescaleLatentSpacePipeline, prescaleLatentSpaceBindGroup);
|
409 |
+
});
|
410 |
+
|
411 |
+
function init_latents(t) {
|
412 |
+
const d = t.data;
|
413 |
+
for (let i = 0; i < d.length; i++) {
|
414 |
+
d[i] = d[i] * sigma;
|
415 |
+
}
|
416 |
+
return t;
|
417 |
+
}
|
418 |
+
|
419 |
+
function scale_model_inputs(t) {
|
420 |
+
const d_i = t.data;
|
421 |
+
const d_o = new Float32Array(d_i.length);
|
422 |
+
|
423 |
+
const divi = (sigma ** 2 + 1) ** 0.5;
|
424 |
+
for (let i = 0; i < d_i.length; i++) {
|
425 |
+
d_o[i] = d_i[i] / divi;
|
426 |
+
}
|
427 |
+
return new ort.Tensor(d_o, t.dims);
|
428 |
+
}
|
429 |
+
|
430 |
+
function step(model_output, sample) {
|
431 |
+
// poor mens EulerA.
|
432 |
+
// Since this is just a example for sd-turbo, only implement the absolute minimum
|
433 |
+
// needed to create an image
|
434 |
+
const d_o = new Float32Array(model_output.data.length);
|
435 |
+
const prev_sample = new ort.Tensor(d_o, model_output.dims);
|
436 |
+
const sigma_hat = sigma * (gamma + 1);
|
437 |
+
|
438 |
+
for (let i = 0; i < model_output.data.length; i++) {
|
439 |
+
pred_original_sample = sample.data[i] - sigma_hat * model_output.data[i];
|
440 |
+
derivative = (sample.data[i] - pred_original_sample) / sigma_hat;
|
441 |
+
dt = 0 - sigma_hat;
|
442 |
+
d_o[i] = (sample.data[i] + derivative * dt) / vae_scaling_factor;
|
443 |
+
}
|
444 |
+
return prev_sample;
|
445 |
+
}
|
446 |
+
|
447 |
+
function draw_image(t, image_nr) {
|
448 |
+
let pix = t.data;
|
449 |
+
for (var i = 0; i < pix.length; i++) {
|
450 |
+
let x = pix[i];
|
451 |
+
x = x / 2 + 0.5
|
452 |
+
if (x < 0.) x = 0.;
|
453 |
+
if (x > 1.) x = 1.;
|
454 |
+
pix[i] = x;
|
455 |
+
}
|
456 |
+
const imageData = t.toImageData({ tensorLayout: 'NCWH', format: 'RGB' });
|
457 |
+
const canvas = document.getElementById(`img_canvas_${image_nr}`);
|
458 |
+
canvas.width = imageData.width;
|
459 |
+
canvas.height = imageData.height;
|
460 |
+
canvas.getContext('2d').putImageData(imageData, 0, 0);
|
461 |
+
const div = document.getElementById(`img_div_${image_nr}`);
|
462 |
+
div.style.opacity = 1.
|
463 |
+
}
|
464 |
+
|
465 |
+
async function downloadToCPU(buffer) {
|
466 |
+
const stagingBuffer = deviceWebgpu.createBuffer({
|
467 |
+
usage: GPUBufferUsage.MAP_READ | GPUBufferUsage.COPY_DST,
|
468 |
+
size: buffer.size
|
469 |
+
});
|
470 |
+
const encoder = deviceWebgpu.createCommandEncoder();
|
471 |
+
encoder.copyBufferToBuffer(buffer, 0, stagingBuffer, 0, buffer.size);
|
472 |
+
deviceWebgpu.queue.submit([encoder.finish()]);
|
473 |
+
|
474 |
+
await stagingBuffer.mapAsync(GPUMapMode.READ);
|
475 |
+
const arrayBuffer = stagingBuffer.getMappedRange().slice(0, buffer.size / 4);
|
476 |
+
stagingBuffer.destroy();
|
477 |
+
return new Float32Array(arrayBuffer);
|
478 |
+
};
|
479 |
+
|
480 |
+
async function run() {
|
481 |
+
try {
|
482 |
+
document.getElementById('status').innerText = "generating ...";
|
483 |
+
|
484 |
+
if (tokenizer === undefined) {
|
485 |
+
tokenizer = await AutoTokenizer.from_pretrained('tokenizer', quantized = false, local_files_only = false);
|
486 |
+
tokenizer.pad_token_id = 0;
|
487 |
+
}
|
488 |
+
let canvases = [];
|
489 |
+
await loading;
|
490 |
+
|
491 |
+
const { input_ids } = await tokenizer(text.value, { padding: true, max_length: 77, truncation: true, return_tensor: false });
|
492 |
+
|
493 |
+
// text-encoder
|
494 |
+
let start = performance.now();
|
495 |
+
const executionStart = performance.now();
|
496 |
+
textEncoderOutputs['last_hidden_state'] = textEncoderOutputsTensor;
|
497 |
+
await models.text_encoder.sess.run({ "input_ids": new ort.Tensor("int32", input_ids, [1, input_ids.length]) }, textEncoderOutputs);
|
498 |
+
|
499 |
+
let perf_info = [`text_encoder: ${(performance.now() - start).toFixed(1)}ms`];
|
500 |
+
|
501 |
+
for (let j = 0; j < config.images; j++) {
|
502 |
+
start = performance.now();
|
503 |
+
let feed = {
|
504 |
+
"sample": unetSampleInputsTensor,
|
505 |
+
"timestep": new ort.Tensor("int64", [999n], [1]),
|
506 |
+
"encoder_hidden_states": textEncoderOutputsTensor,
|
507 |
+
};
|
508 |
+
var unetOutSampleOutputs = {};
|
509 |
+
unetOutSampleOutputs['out_sample'] = unetOutSampleTensor;
|
510 |
+
let { out_sample } = await models.unet.sess.run(feed, unetOutSampleOutputs);
|
511 |
+
perf_info.push(`unet: ${(performance.now() - start).toFixed(1)}ms`);
|
512 |
+
|
513 |
+
submitComputeTask(stepLatentSpacePipeline, stepLatentSpaceBindGroup);
|
514 |
+
|
515 |
+
start = performance.now();
|
516 |
+
var vaeDecodeInputs = {};
|
517 |
+
vaeDecodeInputs['latent_sample'] = unetOutSampleTensor;
|
518 |
+
const decodedOutputs = {};
|
519 |
+
decodedOutputs['sample'] = decodedOutputsTensor;
|
520 |
+
await models.vae_decoder.sess.run(vaeDecodeInputs, decodedOutputs);
|
521 |
+
// profiling
|
522 |
+
// ort.env.webgpu.profiling = { mode: "" };
|
523 |
+
|
524 |
+
|
525 |
+
const commandEncoder = deviceWebgpu.createCommandEncoder();
|
526 |
+
const textureView = renderContext.getCurrentTexture().createView();
|
527 |
+
const renderPassDescriptor = {
|
528 |
+
colorAttachments: [
|
529 |
+
{
|
530 |
+
view: textureView,
|
531 |
+
clearValue: { r: 1.0, g: 0.0, b: 0.0, a: 1.0 },
|
532 |
+
loadOp: 'clear',
|
533 |
+
storeOp: 'store',
|
534 |
+
},
|
535 |
+
],
|
536 |
+
};
|
537 |
+
|
538 |
+
const passEncoder = commandEncoder.beginRenderPass(renderPassDescriptor);
|
539 |
+
passEncoder.setPipeline(renderPipeline);
|
540 |
+
passEncoder.setBindGroup(0, renderBindGroup);
|
541 |
+
passEncoder.draw(6, 1, 0, 0);
|
542 |
+
passEncoder.end();
|
543 |
+
deviceWebgpu.queue.submit([commandEncoder.finish()]);
|
544 |
+
await deviceWebgpu.queue.onSubmittedWorkDone();
|
545 |
+
|
546 |
+
const executionEnd = performance.now();
|
547 |
+
perf_info.push(`vae_decoder: ${(executionEnd - start).toFixed(1)}ms`);
|
548 |
+
perf_info.push(`execution time: ${(executionEnd - executionStart).toFixed(1)}ms`);
|
549 |
+
log(perf_info.join(", "))
|
550 |
+
perf_info = [];
|
551 |
+
}
|
552 |
+
//last_hidden_state.dispose();
|
553 |
+
|
554 |
+
log("done");
|
555 |
+
} catch (e) {
|
556 |
+
log(e);
|
557 |
+
}
|
558 |
+
}
|
559 |
+
|
560 |
+
function webgpuResourceInitialize() {
|
561 |
+
deviceWebgpu = ort.env.webgpu.device;
|
562 |
+
queueWebgpu = deviceWebgpu.queue;
|
563 |
+
|
564 |
+
textEncoderOutputsBuffer = deviceWebgpu.createBuffer({
|
565 |
+
size: Math.ceil((1 * 77 * 1024 * 4) / 16) * 16,
|
566 |
+
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST
|
567 |
+
});
|
568 |
+
textEncoderOutputsTensor = ort.Tensor.fromGpuBuffer(textEncoderOutputsBuffer, {
|
569 |
+
dataType: 'float32', dims: [1, 77, 1024],
|
570 |
+
dispose: () => textEncoderOutputsBuffer.destroy()
|
571 |
+
});
|
572 |
+
|
573 |
+
unetOutSampleBuffer = deviceWebgpu.createBuffer({
|
574 |
+
size: Math.ceil((1 * 4 * 64 * 64 * 4) / 16) * 16,
|
575 |
+
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST
|
576 |
+
});
|
577 |
+
unetOutSampleTensor = ort.Tensor.fromGpuBuffer(unetOutSampleBuffer, {
|
578 |
+
dataType: 'float32', dims: [1, 4, 64, 64],
|
579 |
+
dispose: () => unetOutSampleBuffer.destroy()
|
580 |
+
});
|
581 |
+
latentBuffer = deviceWebgpu.createBuffer({
|
582 |
+
size: Math.ceil((1 * 4 * 64 * 64 * 4) / 16) * 16,
|
583 |
+
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST
|
584 |
+
});
|
585 |
+
unetSampleInputsBuffer = deviceWebgpu.createBuffer({
|
586 |
+
size: Math.ceil((1 * 4 * 64 * 64 * 4) / 16) * 16,
|
587 |
+
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST
|
588 |
+
});
|
589 |
+
unetSampleInputsTensor = ort.Tensor.fromGpuBuffer(unetSampleInputsBuffer, {
|
590 |
+
dataType: 'float32', dims: [1, 4, 64, 64],
|
591 |
+
dispose: () => unetSampleInputsBuffer.destroy()
|
592 |
+
});
|
593 |
+
decodedOutputsBuffer = deviceWebgpu.createBuffer({
|
594 |
+
size: Math.ceil((1 * 3 * pixelHeight * pixelWidth * 4) / 16) * 16,
|
595 |
+
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC | GPUBufferUsage.COPY_DST
|
596 |
+
});
|
597 |
+
decodedOutputsTensor = ort.Tensor.fromGpuBuffer(decodedOutputsBuffer, {
|
598 |
+
dataType: 'float32', dims: [1, 3, pixelHeight, pixelWidth],
|
599 |
+
dispose: () => decodedOutputsBuffer.destroy()
|
600 |
+
});
|
601 |
+
|
602 |
+
prescaleLatentSpacePipeline = deviceWebgpu.createComputePipeline({
|
603 |
+
layout: 'auto',
|
604 |
+
compute: {
|
605 |
+
module: deviceWebgpu.createShaderModule({
|
606 |
+
code: PRESCALE_LATENT_SPACE_SHADER,
|
607 |
+
}),
|
608 |
+
entryPoint: '_start',
|
609 |
+
},
|
610 |
+
});
|
611 |
+
|
612 |
+
prescaleLatentSpaceBindGroup = deviceWebgpu.createBindGroup({
|
613 |
+
layout: prescaleLatentSpacePipeline.getBindGroupLayout(0),
|
614 |
+
entries: [
|
615 |
+
{
|
616 |
+
binding: 0,
|
617 |
+
resource: {
|
618 |
+
buffer: unetSampleInputsBuffer,
|
619 |
+
},
|
620 |
+
},
|
621 |
+
{
|
622 |
+
binding: 1,
|
623 |
+
resource: {
|
624 |
+
buffer: latentBuffer,
|
625 |
+
},
|
626 |
+
}
|
627 |
+
],
|
628 |
+
});
|
629 |
+
|
630 |
+
stepLatentSpacePipeline = deviceWebgpu.createComputePipeline({
|
631 |
+
layout: 'auto',
|
632 |
+
compute: {
|
633 |
+
module: deviceWebgpu.createShaderModule({
|
634 |
+
code: STEP_LATENT_SPACE_SHADER,
|
635 |
+
}),
|
636 |
+
entryPoint: '_start',
|
637 |
+
},
|
638 |
+
});
|
639 |
+
stepLatentSpaceBindGroup = deviceWebgpu.createBindGroup({
|
640 |
+
layout: stepLatentSpacePipeline.getBindGroupLayout(0),
|
641 |
+
entries: [
|
642 |
+
{
|
643 |
+
binding: 0,
|
644 |
+
resource: {
|
645 |
+
buffer: unetOutSampleBuffer,
|
646 |
+
},
|
647 |
+
},
|
648 |
+
{
|
649 |
+
binding: 1,
|
650 |
+
resource: {
|
651 |
+
buffer: latentBuffer,
|
652 |
+
},
|
653 |
+
}
|
654 |
+
],
|
655 |
+
});
|
656 |
+
|
657 |
+
|
658 |
+
|
659 |
+
const canvas = document.getElementById(`canvas`);
|
660 |
+
canvas.width = pixelWidth;
|
661 |
+
canvas.height = pixelHeight;
|
662 |
+
renderContext = canvas.getContext('webgpu');
|
663 |
+
const presentationFormat = navigator.gpu.getPreferredCanvasFormat();
|
664 |
+
const presentationSize = [pixelWidth, pixelHeight];
|
665 |
+
renderContext.configure({
|
666 |
+
device: deviceWebgpu,
|
667 |
+
size: presentationSize,
|
668 |
+
format: presentationFormat,
|
669 |
+
alphaMode: 'opaque',
|
670 |
+
});
|
671 |
+
renderPipeline = deviceWebgpu.createRenderPipeline({
|
672 |
+
layout: 'auto',
|
673 |
+
vertex: {
|
674 |
+
module: deviceWebgpu.createShaderModule({
|
675 |
+
code: VERTEX_SHADER,
|
676 |
+
}),
|
677 |
+
entryPoint: 'main',
|
678 |
+
},
|
679 |
+
fragment: {
|
680 |
+
module: deviceWebgpu.createShaderModule({
|
681 |
+
code: PIXEL_SHADER,
|
682 |
+
}),
|
683 |
+
entryPoint: 'main',
|
684 |
+
targets: [
|
685 |
+
{
|
686 |
+
format: presentationFormat,
|
687 |
+
},
|
688 |
+
],
|
689 |
+
},
|
690 |
+
primitive: {
|
691 |
+
topology: 'triangle-list',
|
692 |
+
},
|
693 |
+
});
|
694 |
+
|
695 |
+
renderBindGroup = deviceWebgpu.createBindGroup({
|
696 |
+
layout: renderPipeline.getBindGroupLayout(0),
|
697 |
+
entries: [
|
698 |
+
{
|
699 |
+
binding: 1,
|
700 |
+
resource: {
|
701 |
+
buffer: decodedOutputsBuffer,
|
702 |
+
},
|
703 |
+
}
|
704 |
+
],
|
705 |
+
});
|
706 |
+
}
|
707 |
+
|
708 |
+
async function main() {
|
709 |
+
loading = load_models(models);
|
710 |
+
}
|
711 |
+
|
712 |
+
window.onload = () => {
|
713 |
+
main();
|
714 |
+
}
|
715 |
+
</script>
|
716 |
+
|
717 |
+
</html>
|
demos/sd-turbo/models/text_encoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1ab8b82cee150bf2affbcf4bc05eda98a14e082d973429b7e668d3f49e62445
|
3 |
+
size 681434530
|
demos/sd-turbo/models/tokenizer/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
demos/sd-turbo/models/tokenizer/tokenizer_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"bos_token": {
|
4 |
+
"__type": "AddedToken",
|
5 |
+
"content": "<|startoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": true,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false
|
10 |
+
},
|
11 |
+
"clean_up_tokenization_spaces": true,
|
12 |
+
"do_lower_case": true,
|
13 |
+
"eos_token": {
|
14 |
+
"__type": "AddedToken",
|
15 |
+
"content": "<|endoftext|>",
|
16 |
+
"lstrip": false,
|
17 |
+
"normalized": true,
|
18 |
+
"rstrip": false,
|
19 |
+
"single_word": false
|
20 |
+
},
|
21 |
+
"errors": "replace",
|
22 |
+
"model_max_length": 77,
|
23 |
+
"pad_token": "<|endoftext|>",
|
24 |
+
"processor_class": "CLIPProcessor",
|
25 |
+
"tokenizer_class": "CLIPTokenizer",
|
26 |
+
"unk_token": {
|
27 |
+
"__type": "AddedToken",
|
28 |
+
"content": "<|endoftext|>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false
|
33 |
+
}
|
34 |
+
}
|
demos/sd-turbo/models/unet/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:111a916278adea77511eeab6662ffe356c924b15127a3556608ad557abbf3fab
|
3 |
+
size 1733736024
|
demos/sd-turbo/models/vae_decoder/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b506b8b8bedbfe342c60fb2a931fb7f666cbc910e1869a68b9b55a99500ed17a
|
3 |
+
size 99116807
|
index.html
CHANGED
@@ -1,44 +1,41 @@
|
|
1 |
-
<
|
|
|
|
|
|
|
|
|
2 |
<body>
|
3 |
-
<
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
"
|
11 |
-
|
12 |
-
|
13 |
-
];
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
td.innerHTML = `<a href=${href}>${demo[0]}</a>`;
|
40 |
-
td = row.insertCell(-1);
|
41 |
-
td.innerHTML = demo[2];
|
42 |
-
}
|
43 |
-
</script>
|
44 |
-
</body>
|
|
|
1 |
+
<head>
|
2 |
+
<title>WebAI Demos</title>
|
3 |
+
<link href="css/styles.css" rel="stylesheet">
|
4 |
+
</head>
|
5 |
+
<script defer type="module" src="main.js"></script>
|
6 |
<body>
|
7 |
+
<div class="wrapper">
|
8 |
+
<nav class="panel container">
|
9 |
+
<h1><a href="./">WebAI Demos</a></h1>
|
10 |
+
<input type="checkbox" id="menuToggle">
|
11 |
+
<label class="expand" for="menuToggle"></label>
|
12 |
+
<div class="panelContents">
|
13 |
+
<hr>
|
14 |
+
<div id="demoList"></div>
|
15 |
+
</div>
|
16 |
+
</nav>
|
|
|
17 |
|
18 |
+
<main>
|
19 |
+
<div id="intro">
|
20 |
+
<p>
|
21 |
+
The WebAI demos demonstrate the use of the <a href="//webgpu.dev">WebGPU API</a>.
|
22 |
+
</p>
|
23 |
+
</div>
|
24 |
+
<div id="demo" style="display: none;">
|
25 |
+
<div class="demoInfo">
|
26 |
+
<h1 id="title"></h1>
|
27 |
+
<p id="description"></p>
|
28 |
+
</div>
|
29 |
+
<div class="demoContainer"></div>
|
30 |
+
</div>
|
31 |
+
<nav id="code" class="sourceFileNav">
|
32 |
+
<div class="sourceLR" id="sourceL"><</div>
|
33 |
+
<div id="sourceTabs" class="sourceFileScrollContainer">
|
34 |
+
<ul id="codeTabs"></ul>
|
35 |
+
</div>
|
36 |
+
<div class="sourceLR" id="sourceR">></div>
|
37 |
+
</nav>
|
38 |
+
<div id="sources"></div>
|
39 |
+
</main>
|
40 |
+
</div>
|
41 |
+
</body>
|
|
|
|
|
|
|
|
|
|
|
|
main.js
ADDED
The diff for this file is too large to render.
See raw diff
|
|
menu.svg
ADDED
|