QA_arabic / app.py
wedo2910's picture
Update app.py
1598ad8 verified
raw
history blame
2.39 kB
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForQuestionAnswering
model_name = "wedo2910/qa_arabic_model"
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02")
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
qa_pipeline = pipeline(
"question-answering",
model=model,
tokenizer=tokenizer
)
# Default settings
default_settings = {
"max_new_tokens": 512,
"temperature": 0.7,
"top_p": 0.9,
"min_p": 0,
"top_k": 0,
"repetition_penalty": 1.0,
"presence_penalty": 0,
"frequency_penalty": 0,
"max_answer_len": 50,
"doc_stride": 128,
}
# Streamlit UI
st.title("Arabic AI Question Answering")
st.subheader("Ask a question to get an answer.")
# Input field for the question only
question = st.text_input("Question", placeholder="Enter your question here...")
# Settings sliders
st.subheader("Settings")
max_new_tokens = st.number_input("Max New Tokens", min_value=1, max_value=1000000, value=512)
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7, step=0.1)
top_p = st.slider("Top P", min_value=0.0, max_value=1.0, value=0.9, step=0.1)
min_p = st.slider("Min P", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
top_k = st.number_input("Top K", min_value=0, max_value=1000, value=0)
repetition_penalty = st.slider("Repetition Penalty", min_value=0.01, max_value=5.0, value=1.0, step=0.1)
presence_penalty = st.slider("Presence Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1)
frequency_penalty = st.slider("Frequency Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1)
max_answer_len = st.number_input("Max Answer Length", min_value=1, value=50)
doc_stride = st.number_input("Document Stride", min_value=1, value=128)
# Generate Answer button
if st.button("Get Answer"):
if not question:
st.error("The question field is required.")
else:
# Generate answer
try:
prediction = qa_pipeline(
{"question": question},
max_answer_len=max_answer_len,
doc_stride=doc_stride
)
st.subheader("Result")
st.write(f"**Question:** {question}")
st.write(f"**Answer:** {prediction['answer']}")
except Exception as e:
st.error(f"Error: {e}")