|
import streamlit as st |
|
from transformers import pipeline |
|
|
|
from transformers import AutoTokenizer, AutoModelForQuestionAnswering |
|
|
|
model_name = "wedo2910/qa_arabic_model" |
|
tokenizer = AutoTokenizer.from_pretrained("aubmindlab/bert-base-arabertv02") |
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
|
|
qa_pipeline = pipeline( |
|
"question-answering", |
|
model=model, |
|
tokenizer=tokenizer |
|
) |
|
|
|
|
|
default_settings = { |
|
"max_new_tokens": 512, |
|
"temperature": 0.7, |
|
"top_p": 0.9, |
|
"min_p": 0, |
|
"top_k": 0, |
|
"repetition_penalty": 1.0, |
|
"presence_penalty": 0, |
|
"frequency_penalty": 0, |
|
"max_answer_len": 50, |
|
"doc_stride": 128, |
|
} |
|
|
|
|
|
st.title("Arabic AI Question Answering") |
|
st.subheader("Ask a question to get an answer.") |
|
|
|
|
|
question = st.text_input("Question", placeholder="Enter your question here...") |
|
|
|
|
|
st.subheader("Settings") |
|
max_new_tokens = st.number_input("Max New Tokens", min_value=1, max_value=1000000, value=512) |
|
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7, step=0.1) |
|
top_p = st.slider("Top P", min_value=0.0, max_value=1.0, value=0.9, step=0.1) |
|
min_p = st.slider("Min P", min_value=0.0, max_value=1.0, value=0.0, step=0.1) |
|
top_k = st.number_input("Top K", min_value=0, max_value=1000, value=0) |
|
repetition_penalty = st.slider("Repetition Penalty", min_value=0.01, max_value=5.0, value=1.0, step=0.1) |
|
presence_penalty = st.slider("Presence Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1) |
|
frequency_penalty = st.slider("Frequency Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1) |
|
max_answer_len = st.number_input("Max Answer Length", min_value=1, value=50) |
|
doc_stride = st.number_input("Document Stride", min_value=1, value=128) |
|
|
|
|
|
if st.button("Get Answer"): |
|
if not question: |
|
st.error("The question field is required.") |
|
else: |
|
|
|
try: |
|
prediction = qa_pipeline( |
|
{"question": question}, |
|
max_answer_len=max_answer_len, |
|
doc_stride=doc_stride |
|
) |
|
st.subheader("Result") |
|
st.write(f"**Question:** {question}") |
|
st.write(f"**Answer:** {prediction['answer']}") |
|
except Exception as e: |
|
st.error(f"Error: {e}") |