Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,69 @@
|
|
1 |
import streamlit as st
|
2 |
-
from transformers import
|
3 |
|
4 |
-
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
"min_p": 0,
|
22 |
-
"top_k": 0,
|
23 |
-
"repetition_penalty": 1.0,
|
24 |
-
"presence_penalty": 0,
|
25 |
-
"frequency_penalty": 0,
|
26 |
-
"max_answer_len": 50,
|
27 |
-
"doc_stride": 128,
|
28 |
-
}
|
29 |
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
# Streamlit UI
|
36 |
-
st.title("Arabic AI
|
37 |
-
st.subheader("Ask a question to get an answer.")
|
38 |
|
39 |
-
# Input field for the question
|
40 |
question = st.text_input("Question", placeholder="Enter your question here...")
|
41 |
|
42 |
-
# Settings sliders
|
43 |
st.subheader("Settings")
|
44 |
-
max_new_tokens = st.number_input("Max New Tokens", min_value=1, max_value=
|
45 |
-
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.
|
46 |
-
top_p = st.slider("Top P", min_value=0.0, max_value=1.0, value=0.9, step=0.1)
|
47 |
-
min_p = st.slider("Min P", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
|
48 |
-
top_k = st.number_input("Top K", min_value=0, max_value=1000, value=0)
|
49 |
-
repetition_penalty = st.slider("Repetition Penalty", min_value=0.01, max_value=5.0, value=1.0, step=0.1)
|
50 |
-
presence_penalty = st.slider("Presence Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1)
|
51 |
-
frequency_penalty = st.slider("Frequency Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1)
|
52 |
-
max_answer_len = st.number_input("Max Answer Length", min_value=1, value=50)
|
53 |
-
doc_stride = st.number_input("Document Stride", min_value=1, value=128)
|
54 |
|
55 |
# Generate Answer button
|
56 |
if st.button("Get Answer"):
|
57 |
if not question:
|
58 |
st.error("The question field is required.")
|
59 |
else:
|
60 |
-
# Generate answer using the default context
|
61 |
try:
|
62 |
-
|
63 |
-
{"context": default_context, "question": question},
|
64 |
-
max_answer_len=max_answer_len,
|
65 |
-
doc_stride=doc_stride
|
66 |
-
)
|
67 |
st.subheader("Result")
|
68 |
st.write(f"**Question:** {question}")
|
69 |
-
st.write(f"**Answer:** {
|
70 |
except Exception as e:
|
71 |
-
st.error(f"Error: {e}")
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
|
4 |
+
# Load the new model and tokenizer
|
5 |
+
model_name = "wedo2910/research_ai"
|
6 |
+
tokenizer_name = "wedo2910/research_ai_tok"
|
7 |
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
|
|
10 |
|
11 |
+
# Define the custom inference function
|
12 |
+
def single_inference(question, max_new_tokens, temperature):
|
13 |
+
# Prepare the prompt messages
|
14 |
+
messages = [
|
15 |
+
{"role": "system", "content": "اجب علي الاتي بالعربي فقط."},
|
16 |
+
{"role": "user", "content": question},
|
17 |
+
]
|
18 |
+
|
19 |
+
# Use the tokenizer's chat template functionality
|
20 |
+
input_ids = tokenizer.apply_chat_template(
|
21 |
+
messages,
|
22 |
+
add_generation_prompt=True,
|
23 |
+
return_tensors="pt"
|
24 |
+
).to(model.device)
|
25 |
|
26 |
+
# Define terminator tokens (end-of-sequence markers)
|
27 |
+
terminators = [
|
28 |
+
tokenizer.eos_token_id,
|
29 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
30 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
+
# Generate the output
|
33 |
+
outputs = model.generate(
|
34 |
+
input_ids,
|
35 |
+
max_new_tokens=max_new_tokens,
|
36 |
+
eos_token_id=terminators,
|
37 |
+
do_sample=True,
|
38 |
+
temperature=temperature,
|
39 |
+
)
|
40 |
+
|
41 |
+
# Decode only the newly generated tokens (i.e. skip the prompt)
|
42 |
+
response = outputs[0][input_ids.shape[-1]:]
|
43 |
+
output = tokenizer.decode(response, skip_special_tokens=True)
|
44 |
+
return output
|
45 |
|
46 |
# Streamlit UI
|
47 |
+
st.title("Arabic AI Research QA")
|
48 |
+
st.subheader("Ask a question to get an answer from the research AI model.")
|
49 |
|
50 |
+
# Input field for the question
|
51 |
question = st.text_input("Question", placeholder="Enter your question here...")
|
52 |
|
53 |
+
# Settings sliders for generation parameters
|
54 |
st.subheader("Settings")
|
55 |
+
max_new_tokens = st.number_input("Max New Tokens", min_value=1, max_value=1000, value=256)
|
56 |
+
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.4, step=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Generate Answer button
|
59 |
if st.button("Get Answer"):
|
60 |
if not question:
|
61 |
st.error("The question field is required.")
|
62 |
else:
|
|
|
63 |
try:
|
64 |
+
answer = single_inference(question, max_new_tokens, temperature)
|
|
|
|
|
|
|
|
|
65 |
st.subheader("Result")
|
66 |
st.write(f"**Question:** {question}")
|
67 |
+
st.write(f"**Answer:** {answer}")
|
68 |
except Exception as e:
|
69 |
+
st.error(f"Error: {e}")
|