Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
# Load the model and tokenizer from the models/ directory
|
5 |
+
qa_pipeline = pipeline(
|
6 |
+
"question-answering",
|
7 |
+
model="models/qa_arabic_model_final",
|
8 |
+
tokenizer="models/qa_arabic_model_final"
|
9 |
+
)
|
10 |
+
|
11 |
+
# Default settings
|
12 |
+
default_settings = {
|
13 |
+
"max_new_tokens": 512,
|
14 |
+
"temperature": 0.7,
|
15 |
+
"top_p": 0.9,
|
16 |
+
"min_p": 0,
|
17 |
+
"top_k": 0,
|
18 |
+
"repetition_penalty": 1.0,
|
19 |
+
"presence_penalty": 0,
|
20 |
+
"frequency_penalty": 0,
|
21 |
+
"max_answer_len": 50,
|
22 |
+
"doc_stride": 128,
|
23 |
+
}
|
24 |
+
|
25 |
+
# Streamlit UI
|
26 |
+
st.title("Arabic AI Question Answering")
|
27 |
+
st.subheader("Provide context and ask a question to get answers.")
|
28 |
+
|
29 |
+
# Input fields
|
30 |
+
context = st.text_area("Context", placeholder="Enter the context here...", height=200)
|
31 |
+
question = st.text_input("Question", placeholder="Enter your question here...")
|
32 |
+
|
33 |
+
# Settings sliders
|
34 |
+
st.subheader("Settings")
|
35 |
+
max_new_tokens = st.number_input("Max New Tokens", min_value=1, max_value=1000000, value=512)
|
36 |
+
temperature = st.slider("Temperature", min_value=0.0, max_value=1.0, value=0.7, step=0.1)
|
37 |
+
top_p = st.slider("Top P", min_value=0.0, max_value=1.0, value=0.9, step=0.1)
|
38 |
+
min_p = st.slider("Min P", min_value=0.0, max_value=1.0, value=0.0, step=0.1)
|
39 |
+
top_k = st.number_input("Top K", min_value=0, max_value=1000, value=0)
|
40 |
+
repetition_penalty = st.slider("Repetition Penalty", min_value=0.01, max_value=5.0, value=1.0, step=0.1)
|
41 |
+
presence_penalty = st.slider("Presence Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1)
|
42 |
+
frequency_penalty = st.slider("Frequency Penalty", min_value=-2.0, max_value=2.0, value=0.0, step=0.1)
|
43 |
+
max_answer_len = st.number_input("Max Answer Length", min_value=1, value=50)
|
44 |
+
doc_stride = st.number_input("Document Stride", min_value=1, value=128)
|
45 |
+
|
46 |
+
# Generate Answer button
|
47 |
+
if st.button("Get Answer"):
|
48 |
+
if not context or not question:
|
49 |
+
st.error("Both context and question fields are required.")
|
50 |
+
else:
|
51 |
+
# Generate answer
|
52 |
+
try:
|
53 |
+
prediction = qa_pipeline(
|
54 |
+
{"context": context, "question": question},
|
55 |
+
max_answer_len=max_answer_len,
|
56 |
+
doc_stride=doc_stride
|
57 |
+
)
|
58 |
+
st.subheader("Result")
|
59 |
+
st.write(f"**Question:** {question}")
|
60 |
+
st.write(f"**Answer:** {prediction['answer']}")
|
61 |
+
except Exception as e:
|
62 |
+
st.error(f"Error: {e}")
|