File size: 7,316 Bytes
8cc057d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51092c6
 
 
 
 
 
 
 
 
8cc057d
 
 
 
 
51092c6
 
 
8cc057d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4a2f3
 
 
 
 
 
 
8cc057d
 
 
 
 
 
 
 
 
 
 
 
 
 
ea4a2f3
8cc057d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import matplotlib.pyplot as plt
import streamlit as st
import seaborn as sns
from interact_with_llm import Agent
import json
import numpy as np


agent = Agent()
QUESTION_ANSWER_MAP = {
    "Question1: Are you usually?": {
        "A 'Good Mixer with groups of people": "Extrovert",
        "Rather quiet and reserved": "Introvert"
    },
    "Question2: Among your friends, you are?": {
        "Full of news about everybody": "Extrovert",
        "One of the last to hear what is going on": "Introvert"
    },
    "Question3: In doing something that many other people do, you would rather?": {
        "Invent a way of your own": "Intuition",
        "Do it in the accepted way": "Sensing"
    },
    "Question4: Do you admire the people who are?": {
        "Normal-acting to never make themselves the center of attention": "Sensing",
        "Too original and individual to care whether they are the center of attention or not": "Intuition"
    },
    "Question5: Do you more often let?": {
        "Your heart rule your head": "Feeling",
        "Your head rule your heart": "Thinking"
    },
    "Question6: Do you usually?": {
        "Value emotion more than logic": "Feeling",
        "Value logic more than feelings": "Thinking"
    },
    "Question7: When you go somewhere for the day, you would rather": {
        "Plan what you will do and when": "Judging",
        "Just go": "Perceiving"
    },
    "Question8: When you have a special job to do, you like to": {
        "Organize it carefully before you start": "Judging",
        "Find out what is necessary as you go along": "Perceiving"
    }
}
final = {"E_I": 0, "S_N":0, "T_F":0, "J_P":0 }
personality_map = {"Extrovert":("E_I", 0), "Introvert":("E_I", 50),
                   "Sensing":("S_N", 0), "Intuition":("S_N", 50),
                    "Thinking":("T_F", 0), "Feeling":("T_F", 50),
                    "Judging":("J_P", 0), "Perceiving":("J_P", 50)}
def process_choice(dic):
    final = {"J_P":0 ,"T_F":0,  "S_N":0, "E_I": 0 }
    for k, v in dic.items():
        pair = personality_map[QUESTION_ANSWER_MAP[k][v]]
        final[pair[0]] += pair[1]
    return final


def process_other(other):
    agent = Agent()
    result = {}
    for k,v in other.items():
        pair = agent.send_msg({k:v})
        result[pair[0]] = pair[1]
    final = {"J_P":0 ,"T_F":0,  "S_N":0, "E_I": 0 }
    for k,v in result.items():
        pair = personality_map[k]
        try:
            final[pair[0]] += 0.5 * int(v)
        except:
            final[pair[0]] += 25
    return final
    
def analyze_post(post):
    agent = Agent()

    result = agent.send_post(post)
    print(result)
    try:
        data = json.loads(result)
        final = {"J_P":0 ,"T_F":0,  "S_N":0, "E_I": 0 }
        final['E_I'] = 100 - data["Extrovert-Introvert"]["score"]
        final['S_N'] = 100 - data["Sensing-Intuition"]["score"]
        final["T_F"] = 100 - data["Thinking-Feeling"]["score"]
        final["J_P"] = 100 - data["Judging-Perceiving"]["score"]
    except:
        final = {}
    return final
    


def generate_image(final):
    if final == {}:
        st.write("I have no idea about it. Please provide more information")
        return
    # 初始化画布和坐标轴
    fig, ax = plt.subplots(figsize=(6, 6))

    # 设置渐变颜色
    colors = [
        ['#FF6347', '#FFD700'],
        ['#00FA9A', '#32CD32'],
        ['#6495ED', '#4682B4'],
        ['#DDA0DD', '#8A2BE2']
    ]

    # 创建一个大的图像数组
    img = np.zeros((100, 100, 3), dtype=np.uint8)

    sorted_keys = ["E_I", "S_N", "T_F", "J_P"]
    personality= ""
    for k in sorted_keys:
        v = final[k]
        if v < 50:
            personality += k[0]
        else:
            personality += k[2]
    for idx, k in enumerate(sorted_keys):
        v = final[k]
        if idx == 0:  # 左上
            img[int(50*(1-v/100)):50, :50] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
            img[:int(50*(1-v/100)), :50] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
        elif idx == 1:  # 右上
            img[int(50*(1-v/100)):50, 50:] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
            img[:int(50*(1-v/100)), 50:] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
        elif idx == 2:  # 左下
            img[50+int(50*(1-v/100)):, :50] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
            img[50:int(50*(1-v/100))+50, :50] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
        else:  # 右下
            img[50+int(50*(1-v/100)):, 50:] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
            img[50:int(50*(1-v/100))+50, 50:] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
    ax.set_title(f'Your MBTI persopnality may be {personality}', fontsize=16)
    ax.imshow(img)
    ax.axis('off')  # 不显示坐标轴

    # 在每个部分中添加文本
    for idx, k in enumerate(sorted_keys):
        v = final[k]
        if idx == 0:
            ax.text(25, 25, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
        elif idx == 1:
            ax.text(75, 25, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
        elif idx == 2:
            ax.text(25, 75, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
        else:
            ax.text(75, 75, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)

    # 使用st.pyplot显示图表
    st.pyplot(fig)





# def generate_image(final):
    
    
#     # 初始化列表来保存标签和值
#     labels = []
#     values_l = []
#     values_r = []

#     sorted_keys = ["J_P","T_F","S_N", "E_I"]
#     # 遍历字典,更新标签和值列表
#     for k in sorted_keys:
#         v = final[k]
#         labels.append(k)
#         values_l.append(100-v)
#         values_r.append(v)

#     personality = ''

#     for k in sorted_keys:
#         v = final[k]
#         if v < 50:
#             personality += k[0]
#         else:
#             personality += k[2]
#     personality = personality[::-1]
#     fig, ax = plt.subplots(figsize=(10,6))

#     # 使用Seaborn的更漂亮的默认样式
#     sns.set(style="whitegrid")

#     # 为每个键绘制两个条形图,一个为E/S/T/J值,另一个为I/N/F/P值
#     width = 0.4
#     ind = range(len(labels))
#     p1 = ax.barh(ind, values_l, width, color=sns.color_palette("coolwarm", 4)[2], label='E/S/T/J')
#     p2 = ax.barh(ind, values_r, width, left=values_l, color=sns.color_palette("coolwarm", 4)[0], label='I/N/F/P')

#     # 设置标签和标题
#     ax.set_yticks(ind)
#     ax.set_yticklabels([label[0] for label in labels])
#     ax.set_xticks([0, 50, 100])
#     ax.set_xlabel('Percentage', fontsize=14)
#     ax.set_title(f'Your MBTI persopnality may be {personality}', fontsize=16)
#     ax.legend(loc = 'upper right', bbox_to_anchor=(1.15, 1.15))
#     # 显示右侧的'I/N/F/P'标签
#     for i, label in enumerate(labels):
#         ax.text(105, i, label[2], ha='center', va='center', color='black', fontsize=12)
#     # 使用st.pyplot显示图表
#     st.pyplot(fig)