Spaces:
Runtime error
Runtime error
File size: 7,316 Bytes
8cc057d 51092c6 8cc057d 51092c6 8cc057d ea4a2f3 8cc057d ea4a2f3 8cc057d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import matplotlib.pyplot as plt
import streamlit as st
import seaborn as sns
from interact_with_llm import Agent
import json
import numpy as np
agent = Agent()
QUESTION_ANSWER_MAP = {
"Question1: Are you usually?": {
"A 'Good Mixer with groups of people": "Extrovert",
"Rather quiet and reserved": "Introvert"
},
"Question2: Among your friends, you are?": {
"Full of news about everybody": "Extrovert",
"One of the last to hear what is going on": "Introvert"
},
"Question3: In doing something that many other people do, you would rather?": {
"Invent a way of your own": "Intuition",
"Do it in the accepted way": "Sensing"
},
"Question4: Do you admire the people who are?": {
"Normal-acting to never make themselves the center of attention": "Sensing",
"Too original and individual to care whether they are the center of attention or not": "Intuition"
},
"Question5: Do you more often let?": {
"Your heart rule your head": "Feeling",
"Your head rule your heart": "Thinking"
},
"Question6: Do you usually?": {
"Value emotion more than logic": "Feeling",
"Value logic more than feelings": "Thinking"
},
"Question7: When you go somewhere for the day, you would rather": {
"Plan what you will do and when": "Judging",
"Just go": "Perceiving"
},
"Question8: When you have a special job to do, you like to": {
"Organize it carefully before you start": "Judging",
"Find out what is necessary as you go along": "Perceiving"
}
}
final = {"E_I": 0, "S_N":0, "T_F":0, "J_P":0 }
personality_map = {"Extrovert":("E_I", 0), "Introvert":("E_I", 50),
"Sensing":("S_N", 0), "Intuition":("S_N", 50),
"Thinking":("T_F", 0), "Feeling":("T_F", 50),
"Judging":("J_P", 0), "Perceiving":("J_P", 50)}
def process_choice(dic):
final = {"J_P":0 ,"T_F":0, "S_N":0, "E_I": 0 }
for k, v in dic.items():
pair = personality_map[QUESTION_ANSWER_MAP[k][v]]
final[pair[0]] += pair[1]
return final
def process_other(other):
agent = Agent()
result = {}
for k,v in other.items():
pair = agent.send_msg({k:v})
result[pair[0]] = pair[1]
final = {"J_P":0 ,"T_F":0, "S_N":0, "E_I": 0 }
for k,v in result.items():
pair = personality_map[k]
try:
final[pair[0]] += 0.5 * int(v)
except:
final[pair[0]] += 25
return final
def analyze_post(post):
agent = Agent()
result = agent.send_post(post)
print(result)
try:
data = json.loads(result)
final = {"J_P":0 ,"T_F":0, "S_N":0, "E_I": 0 }
final['E_I'] = 100 - data["Extrovert-Introvert"]["score"]
final['S_N'] = 100 - data["Sensing-Intuition"]["score"]
final["T_F"] = 100 - data["Thinking-Feeling"]["score"]
final["J_P"] = 100 - data["Judging-Perceiving"]["score"]
except:
final = {}
return final
def generate_image(final):
if final == {}:
st.write("I have no idea about it. Please provide more information")
return
# 初始化画布和坐标轴
fig, ax = plt.subplots(figsize=(6, 6))
# 设置渐变颜色
colors = [
['#FF6347', '#FFD700'],
['#00FA9A', '#32CD32'],
['#6495ED', '#4682B4'],
['#DDA0DD', '#8A2BE2']
]
# 创建一个大的图像数组
img = np.zeros((100, 100, 3), dtype=np.uint8)
sorted_keys = ["E_I", "S_N", "T_F", "J_P"]
personality= ""
for k in sorted_keys:
v = final[k]
if v < 50:
personality += k[0]
else:
personality += k[2]
for idx, k in enumerate(sorted_keys):
v = final[k]
if idx == 0: # 左上
img[int(50*(1-v/100)):50, :50] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
img[:int(50*(1-v/100)), :50] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
elif idx == 1: # 右上
img[int(50*(1-v/100)):50, 50:] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
img[:int(50*(1-v/100)), 50:] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
elif idx == 2: # 左下
img[50+int(50*(1-v/100)):, :50] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
img[50:int(50*(1-v/100))+50, :50] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
else: # 右下
img[50+int(50*(1-v/100)):, 50:] = np.array([int(colors[idx][0][i:i+2], 16) for i in (1, 3, 5)])
img[50:int(50*(1-v/100))+50, 50:] = np.array([int(colors[idx][1][i:i+2], 16) for i in (1, 3, 5)])
ax.set_title(f'Your MBTI persopnality may be {personality}', fontsize=16)
ax.imshow(img)
ax.axis('off') # 不显示坐标轴
# 在每个部分中添加文本
for idx, k in enumerate(sorted_keys):
v = final[k]
if idx == 0:
ax.text(25, 25, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
elif idx == 1:
ax.text(75, 25, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
elif idx == 2:
ax.text(25, 75, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
else:
ax.text(75, 75, f"{k[0]} {100-v:.0f}%\n{k[2]} {v:.0f}%", ha='center', va='center', color='black', fontsize=12)
# 使用st.pyplot显示图表
st.pyplot(fig)
# def generate_image(final):
# # 初始化列表来保存标签和值
# labels = []
# values_l = []
# values_r = []
# sorted_keys = ["J_P","T_F","S_N", "E_I"]
# # 遍历字典,更新标签和值列表
# for k in sorted_keys:
# v = final[k]
# labels.append(k)
# values_l.append(100-v)
# values_r.append(v)
# personality = ''
# for k in sorted_keys:
# v = final[k]
# if v < 50:
# personality += k[0]
# else:
# personality += k[2]
# personality = personality[::-1]
# fig, ax = plt.subplots(figsize=(10,6))
# # 使用Seaborn的更漂亮的默认样式
# sns.set(style="whitegrid")
# # 为每个键绘制两个条形图,一个为E/S/T/J值,另一个为I/N/F/P值
# width = 0.4
# ind = range(len(labels))
# p1 = ax.barh(ind, values_l, width, color=sns.color_palette("coolwarm", 4)[2], label='E/S/T/J')
# p2 = ax.barh(ind, values_r, width, left=values_l, color=sns.color_palette("coolwarm", 4)[0], label='I/N/F/P')
# # 设置标签和标题
# ax.set_yticks(ind)
# ax.set_yticklabels([label[0] for label in labels])
# ax.set_xticks([0, 50, 100])
# ax.set_xlabel('Percentage', fontsize=14)
# ax.set_title(f'Your MBTI persopnality may be {personality}', fontsize=16)
# ax.legend(loc = 'upper right', bbox_to_anchor=(1.15, 1.15))
# # 显示右侧的'I/N/F/P'标签
# for i, label in enumerate(labels):
# ax.text(105, i, label[2], ha='center', va='center', color='black', fontsize=12)
# # 使用st.pyplot显示图表
# st.pyplot(fig)
|