Spaces:
Sleeping
Sleeping
weightedhuman
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import streamlit as st
|
3 |
+
|
4 |
+
col_left, col_middle, col_right= st.columns(3)
|
5 |
+
col_middle.title("MedBotDash")
|
6 |
+
st.divider()
|
7 |
+
|
8 |
+
@st.cache_resource()
|
9 |
+
def load_model():
|
10 |
+
model = pipeline("token-classification",
|
11 |
+
model="Clinical-AI-Apollo/Medical-NER",
|
12 |
+
aggregation_strategy='simple')
|
13 |
+
return model
|
14 |
+
|
15 |
+
pipe = load_model()
|
16 |
+
|
17 |
+
st.subheader("Enter Detailed Description of your condition")
|
18 |
+
condition = st.text_input("enter the condition")
|
19 |
+
|
20 |
+
data = pipe(condition)
|
21 |
+
|
22 |
+
#st.write(data)
|
23 |
+
|
24 |
+
severity = []
|
25 |
+
sign_symptom = []
|
26 |
+
biological_structure = []
|
27 |
+
age = []
|
28 |
+
sex = []
|
29 |
+
lab_value = []
|
30 |
+
|
31 |
+
# Iterate through the data and append words to their respective lists based on entity_group
|
32 |
+
for entity in data:
|
33 |
+
if entity['entity_group'] == 'SEVERITY':
|
34 |
+
severity.append(entity['word'])
|
35 |
+
elif entity['entity_group'] == 'SIGN_SYMPTOM':
|
36 |
+
sign_symptom.append(entity['word'])
|
37 |
+
elif entity['entity_group'] == 'BIOLOGICAL_STRUCTURE':
|
38 |
+
biological_structure.append(entity['word'])
|
39 |
+
elif entity['entity_group'] == 'AGE':
|
40 |
+
age.append(entity['word'])
|
41 |
+
elif entity['entity_group'] == 'SEX':
|
42 |
+
sex.append(entity['word'])
|
43 |
+
elif entity['entity_group'] == 'LAB_VALUE':
|
44 |
+
lab_value.append(entity['word'])
|
45 |
+
|
46 |
+
col1, col2= st.columns(2)
|
47 |
+
col1.metric("Age", age[0] if age else 'NA')
|
48 |
+
col2.metric("Sex", sex[0] if sex else 'NA')
|
49 |
+
|
50 |
+
st.divider()
|
51 |
+
|
52 |
+
sign_symptom = set(sign_symptom)
|
53 |
+
severity = set(severity)
|
54 |
+
biological_structure = set(biological_structure)
|
55 |
+
age = set(age)
|
56 |
+
sex = set(age)
|
57 |
+
lab_value = set(lab_value)
|
58 |
+
|
59 |
+
tab1, tab2, tab3 = st.tabs(["Signs", "Biological Structure", "Severity"])
|
60 |
+
#st.subheader("Signs")
|
61 |
+
|
62 |
+
with tab1:
|
63 |
+
for sign in sign_symptom:
|
64 |
+
st.text(sign)
|
65 |
+
|
66 |
+
#st.subheader("Severity")
|
67 |
+
|
68 |
+
with tab2:
|
69 |
+
for bio in biological_structure:
|
70 |
+
st.text(bio)
|
71 |
+
|
72 |
+
with tab3:
|
73 |
+
for severity in severity:
|
74 |
+
st.text(severity)
|
75 |
+
|
76 |
+
#st.subheader("Biological Structure")
|
77 |
+
|
78 |
+
|
79 |
+
|